Articles citing this article
The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. O. Fox
Rev. Inst. Fr. Pét., 51 2 (1996) 215-243
Published online: 2006-11-01
This article has been cited by the following article(s):
69 articles
Wall heat transfer prediction in CH4/O2 and H2/O2 rocket thrust chambers using a non-adiabatic flamelet model
Nikolaos Perakis and Oskar J. Haidn Acta Astronautica 174 254 (2020) https://doi.org/10.1016/j.actaastro.2020.05.008
Modeling dual reflux-pressure swing adsorption processes: Numerical solution based on the finite volume method
Ester Rossi, Matteo Paloni, Giuseppe Storti and Renato Rota Chemical Engineering Science 203 173 (2019) https://doi.org/10.1016/j.ces.2019.03.055
Advanced Data Analysis & Modelling in Chemical Engineering
Denis Constales, Gregory S. Yablonsky, Dagmar R. D’hooge, Joris W. Thybaut and Guy B. Marin Advanced Data Analysis & Modelling in Chemical Engineering 307 (2017) https://doi.org/10.1016/B978-0-444-59485-3.00010-2
The strength of multi-scale modeling to unveil the complexity of radical polymerization
Dagmar R. D’hooge, Paul H.M. Van Steenberge, Marie-Françoise Reyniers and Guy B. Marin Progress in Polymer Science 58 59 (2016) https://doi.org/10.1016/j.progpolymsci.2016.04.002
Computational Fluid Dynamics Simulation of Multiscale Mixing in Anionic Polymerization Tubular Reactors
Le Xie, Li‐Tao Zhu and Zheng‐Hong Luo Chemical Engineering & Technology 39 (5) 857 (2016) https://doi.org/10.1002/ceat.201500628
Survey of Turbulent Combustion Models for Large-Eddy Simulations of Propulsive Flowfields
Richard S. Miller and Justin W. Foster AIAA Journal 54 (10) 2930 (2016) https://doi.org/10.2514/1.J054740
Micromixing characterisation in rapid mixing devices by chemical methods and LES modelling
Murielle Bertrand, Nicolas Lamarque, Olivier Lebaigue, Edouard Plasari and Frédéric Ducros Chemical Engineering Journal 283 462 (2016) https://doi.org/10.1016/j.cej.2015.07.022
Justin W. Foster and Richard S. Miller (2015) https://doi.org/10.2514/6.2015-1379
Chemical Reactor Modeling
Hugo A. Jakobsen Chemical Reactor Modeling 809 (2014) https://doi.org/10.1007/978-3-319-05092-8_7
Chemical Reactor Modeling
Hugo A. Jakobsen Chemical Reactor Modeling 3 (2014) https://doi.org/10.1007/978-3-319-05092-8_1
Analysis of Algebraic Closures of the Mean Scalar Dissipation Rate of the Progress Variable Applied to Stagnating Turbulent Flames
Huy Quang Dong, Vincent Robin, Arnaud Mura and Michel Champion Flow, Turbulence and Combustion 90 (2) 301 (2013) https://doi.org/10.1007/s10494-012-9432-x
Turbulent mixing and fast chemical reaction in the confined jet flow at large Schmidt number
Andrei Chorny and Valery Zhdanov Chemical Engineering Science 68 (1) 541 (2012) https://doi.org/10.1016/j.ces.2011.10.015
Comparison of Various Micromixing Approaches for Computational Fluid Dynamics Simulation of Barium Sulfate Precipitation in Tubular Reactors
Alper A. Öncül, Gábor Janiga and Dominique Thévenin Industrial & Engineering Chemistry Research 48 (2) 999 (2009) https://doi.org/10.1021/ie800364k
Computational Fluid Dynamics
Harry E.A. Van den Akker Advances in Chemical Engineering, Computational Fluid Dynamics 31 151 (2006) https://doi.org/10.1016/S0065-2377(06)31003-4
Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion
Peyman Givi AIAA Journal 44 (1) 16 (2006) https://doi.org/10.2514/1.15514
CFD simulations of steam cracking furnaces using detailed combustion mechanisms
G.D. Stefanidis, B. Merci, G.J. Heynderickx and G.B. Marin Computers & Chemical Engineering 30 (4) 635 (2006) https://doi.org/10.1016/j.compchemeng.2005.11.010
CFD‐based compartmental modeling of single phase stirred‐tank reactors
Debangshu Guha, M. P. Dudukovic, P. A. Ramachandran, S. Mehta and J. Alvare AIChE Journal 52 (5) 1836 (2006) https://doi.org/10.1002/aic.10772
The extended IEM mixing model in the framework of the composition PDF approach: applications to diesel spray combustion
V. Sabel'nikov, M. Gorokhovski and N. Baricault Combustion Theory and Modelling 10 (1) 155 (2006) https://doi.org/10.1080/13647830500348109
P. D. Iedema and N. H. Kolhapure 431 (2005) https://doi.org/10.1002/9783527619870.ch9
Mixing effects on performance and stability of low‐density polyethylene reactors
Gary J. Wells and W. Harmon Ray AIChE Journal 51 (12) 3205 (2005) https://doi.org/10.1002/aic.10544
Investigation of turbulent mixing in a confined planar‐jet reactor
Hua Feng, Michael G. Olsen, Ying Liu, Rodney O. Fox and James C. Hill AIChE Journal 51 (10) 2649 (2005) https://doi.org/10.1002/aic.10527
Multiphase Flow Packed-Bed Reactor Modeling: Combining CFD and Cell Network Model
Yi Jiang, Jing Guo and Muthanna H. Al-Dahhan Industrial & Engineering Chemistry Research 44 (14) 4940 (2005) https://doi.org/10.1021/ie0491746
Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure
Venkatramanan Raman and Heinz Pitsch Combustion and Flame 142 (4) 329 (2005) https://doi.org/10.1016/j.combustflame.2005.03.014
Implementation of a conditional moment closure for mixing sensitive reactions
Mikael Mortensen Chemical Engineering Science 59 (24) 5709 (2004) https://doi.org/10.1016/j.ces.2004.05.009
A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations
Denis Talay and Olivier Vaillant The Annals of Applied Probability 13 (1) (2003) https://doi.org/10.1214/aoap/1042765665
Peyman Givi (2003) https://doi.org/10.2514/6.2003-5081
CFD simulation of mixing and reaction: the relevance of the micro-mixing model
Daniele L. Marchisio and Antonello A. Barresi Chemical Engineering Science 58 (16) 3579 (2003) https://doi.org/10.1016/S0009-2509(03)00264-1
The effects of abrupt T-outlets in a riser: 3D simulation using the kinetic theory of granular flow
Juray De Wilde, Guy B. Marin and Geraldine J. Heynderickx Chemical Engineering Science 58 (3-6) 877 (2003) https://doi.org/10.1016/S0009-2509(02)00619-X
Full velocity-scalar probability density function computation of heated channel flow with wall function approach
Jacek Pozorski, Marta Wacławczyk and Jean-Pierre Minier Physics of Fluids 15 (5) 1220 (2003) https://doi.org/10.1063/1.1564827
Computational Fluid Dynamics for Designing Process Equipment: Expectations, Current Status, and Path Forward
Jyeshtharaj B. Joshi and Vivek V. Ranade Industrial & Engineering Chemistry Research 42 (6) 1115 (2003) https://doi.org/10.1021/ie0206608
Engineering Turbulence Modelling and Experiments 5
J. Pozorski, M. Wacławczyk and J.P. Minier Engineering Turbulence Modelling and Experiments 5 821 (2002) https://doi.org/10.1016/B978-008044114-6/50079-X
An extension of the preconditioned advection upstream splitting method for 3D two-phase flow calculations in circulating fluidized beds
Juray De Wilde, Geraldine J. Heynderickx, Jan Vierendeels, Erik Dick and Guy B. Marin Computers & Chemical Engineering 26 (12) 1677 (2002) https://doi.org/10.1016/S0098-1354(02)00157-6
Computational Flow Modeling for Chemical Reactor Engineering
Process Systems Engineering, Computational Flow Modeling for Chemical Reactor Engineering 5 191 (2002) https://doi.org/10.1016/S1874-5970(02)80008-X
Turbulent combustion modeling
Denis Veynante and Luc Vervisch Progress in Energy and Combustion Science 28 (3) 193 (2002) https://doi.org/10.1016/S0360-1285(01)00017-X
CFD modelling of fast chemical reactions in turbulent liquid flows
Lene K. Hjertager, Bjørn H. Hjertager and Tron Solberg Computers & Chemical Engineering 26 (4-5) 507 (2002) https://doi.org/10.1016/S0098-1354(01)00799-2
Computational Flow Modeling for Chemical Reactor Engineering
Process Systems Engineering, Computational Flow Modeling for Chemical Reactor Engineering 5 123 (2002) https://doi.org/10.1016/S1874-5970(02)80006-6
Mean concentrations and concentration fluctuations in a stirred‐tank reactor
Iris L. M. Verschuren, Johan G. Wijers and Jos T. F. Keurentjes AIChE Journal 48 (7) 1390 (2002) https://doi.org/10.1002/aic.690480704
CFD of multiphase flow in packed‐bed reactors: I. k‐Fluid modeling issues
Y. Jiang, M. R. Khadilkar, M. H. Al‐Dahhan and M. P. Dudukovic AIChE Journal 48 (4) 701 (2002) https://doi.org/10.1002/aic.690480406
Mixing in two‐dimensional turbulent reactive flows
W. Gerlinger, K. Schneider and H. Bockhorn ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 81 (S3) 531 (2001) https://doi.org/10.1002/zamm.20010811545
A PDF modelling of precipitation reactors
L. Falk and E. Schaer Chemical Engineering Science 56 (7) 2445 (2001) https://doi.org/10.1016/S0009-2509(00)00447-4
Organische Nanopartikel in wässriger Phase - Theorie, Experiment und Anwendung
Dieter Horn and Jens Rieger Angewandte Chemie 113 (23) 4460 (2001) https://doi.org/10.1002/1521-3757(20011203)113:23<4460::AID-ANGE4460>3.0.CO;2-1
Effect of mixing on product quality in semibatch stirred tank reactors
Iris L. M. Verschuren, Johan G. Wijers and Jos T. F. Keurentjes AIChE Journal 47 (8) 1731 (2001) https://doi.org/10.1002/aic.690470805
The pdf approach to turbulent polydispersed two-phase flows
Jean-Pierre Minier and Eric Peirano Physics Reports 352 (1-3) 1 (2001) https://doi.org/10.1016/S0370-1573(01)00011-4
Simulation of turbulent precipitation in a semi‐batch Taylor‐Couette reactor using CFD
D. L. Marchisio, A. A. Barresi and R. O. Fox AIChE Journal 47 (3) 664 (2001) https://doi.org/10.1002/aic.690470314
Reynolds number effects on mixing and reaction in a turbulent pipe flow
Stefan Heinz and Dirk Roekaerts Chemical Engineering Science 56 (10) 3197 (2001) https://doi.org/10.1016/S0009-2509(00)00539-X
European Symposium on Computer Aided Process Engineering - 11, 34th European Symposium of the Working Party on Computer Aided Process Engineering
L.K. Hjertager, B.H. Hjertager and T. Solberg Computer Aided Chemical Engineering, European Symposium on Computer Aided Process Engineering - 11, 34th European Symposium of the Working Party on Computer Aided Process Engineering 9 159 (2001) https://doi.org/10.1016/S1570-7946(01)80022-5
Advanced Methods to Compute Multiphase Turbulent Reacting Flows
S. Heinz ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 81 (S3) 471 (2001) https://doi.org/10.1002/zamm.20010811515
10th European Conference on Mixing
E. Fournier and L. Falk 10th European Conference on Mixing 407 (2000) https://doi.org/10.1016/B978-044450476-0/50051-0
Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges
Sankaran Sundaresan AIChE Journal 46 (6) 1102 (2000) https://doi.org/10.1002/aic.690460602
Direkte numerische Simulationvon Mischung und Turbulenz inzweidimensionalen Strömungen
Wolfgang Gerlinger, Kai Schneider and Henning Bockhorn Chemie Ingenieur Technik 72 (6) 618 (2000) https://doi.org/10.1002/1522-2640(200006)72:6<618::AID-CITE618>3.0.CO;2-#
Large scale simulations of two-dimensional nonpremixed methane jet flames
S. James and F.A. Jaberi Combustion and Flame 123 (4) 465 (2000) https://doi.org/10.1016/S0010-2180(00)00178-4
Simulation of fine particle formation by precipitation using computational fluid dynamics
Damien Piton, Rodney O. Fox and Bruno Marcant The Canadian Journal of Chemical Engineering 78 (5) 983 (2000) https://doi.org/10.1002/cjce.5450780516
Characteristics of chemically reacting compressible homogeneous turbulence
F. A. Jaberi, D. Livescu and C. K. Madnia Physics of Fluids 12 (5) 1189 (2000) https://doi.org/10.1063/1.870370
Wall-boundary conditions in probability density function methods and application to a turbulent channel flow
Jean-Pierre Minier and Jacek Pozorski Physics of Fluids 11 (9) 2632 (1999) https://doi.org/10.1063/1.870125
The Lagrangian spectral relaxation model for differential diffusion in homogeneous turbulence
R. O. Fox Physics of Fluids 11 (6) 1550 (1999) https://doi.org/10.1063/1.870018
Conditional moment closure for turbulent combustion
A.Y. Klimenko and R.W. Bilger Progress in Energy and Combustion Science 25 (6) 595 (1999) https://doi.org/10.1016/S0360-1285(99)00006-4
Farhad Jaberi (1999) https://doi.org/10.2514/6.1999-199
Influence of hydrodynamics on the upper explosion limit of ethene–air–nitrogen mixtures
Jeroen W. Bolk and K. Roel Westerterp AIChE Journal 45 (1) 124 (1999) https://doi.org/10.1002/aic.690450111
Computational Fluid Dynamics Simulation of Chemical Reactors: Application of in Situ Adaptive Tabulation to Methane Thermochlorination Chemistry
Jimmy J. Shah and Rodney O. Fox Industrial & Engineering Chemistry Research 38 (11) 4200 (1999) https://doi.org/10.1021/ie990125g
Recent Developments in the Statistical Modelling of Turbulent Flows
S. Heinz ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 79 (S1) 119 (1999) https://doi.org/10.1002/zamm.19990791332
Connections between Lagrangian stochastic models and the closure theory of turbulence for stratified flows
Stefan Heinz International Journal of Heat and Fluid Flow 19 (2) 193 (1998) https://doi.org/10.1016/S0142-727X(97)10024-8
Time scales of stratified turbulent flows and relations between second-order closure parameters and flow numbers
Stefan Heinz Physics of Fluids 10 (4) 958 (1998) https://doi.org/10.1063/1.869618
Advances in Chemical Engineering Volume 24
J.A.M. Kuipers and W.P.M. van Swaaij Advances in Chemical Engineering, Advances in Chemical Engineering Volume 24 24 227 (1998) https://doi.org/10.1016/S0065-2377(08)60094-0
DIRECT NUMERICAL SIMULATION OF NON-PREMIXED TURBULENT FLAMES
Luc Vervisch and Thierry Poinsot Annual Review of Fluid Mechanics 30 (1) 655 (1998) https://doi.org/10.1146/annurev.fluid.30.1.655
On the relationship between Lagrangian micromixing models and computational fluid dynamics
Rodney O. Fox Chemical Engineering and Processing: Process Intensification 37 (6) 521 (1998) https://doi.org/10.1016/S0255-2701(98)00059-2
The BMC/GIEM Model for Micromixing in Non-Premixed Turbulent Reacting Flows
Kuochen Tsai and Rodney O. Fox Industrial & Engineering Chemistry Research 37 (6) 2131 (1998) https://doi.org/10.1021/ie970589j
The Lagrangian spectral relaxation model of the scalar dissipation in homogeneous turbulence
R. O. Fox Physics of Fluids 9 (8) 2364 (1997) https://doi.org/10.1063/1.869357
Explicit algebraic scalar‐flux models for turbulent reacting flows
V. Adumitroaie, D. B. Taulbee and P. Givi AIChE Journal 43 (8) 1935 (1997) https://doi.org/10.1002/aic.690430803
PDF modeling of turbulent‐mixing effects on initiator efficiency in a tubular LDPE reactor
Kuochen Tsai and Rodney O. Fox AIChE Journal 42 (10) 2926 (1996) https://doi.org/10.1002/aic.690421020