Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Tailoring Molecular Diffusion in Core‐Shell Zeolite Imidazolate Framework Composites Realizes Efficient Kinetic Separation of Xylene Isomers

Linghe Yang, Guangtong Hai, Ying Liu, Fang Zheng, Fuxing Shen, Lihang Chen, Baojian Liu, Zhiguo Zhang, Qiwei Yang, Qilong Ren, Yong Luo and Zongbi Bao
Angewandte Chemie 137 (18) (2025)
https://doi.org/10.1002/ange.202420953

Tailoring Molecular Diffusion in Core‐Shell Zeolite Imidazolate Framework Composites Realizes Efficient Kinetic Separation of Xylene Isomers

Linghe Yang, Guangtong Hai, Ying Liu, Fang Zheng, Fuxing Shen, Lihang Chen, Baojian Liu, Zhiguo Zhang, Qiwei Yang, Qilong Ren, Yong Luo and Zongbi Bao
Angewandte Chemie International Edition 64 (18) (2025)
https://doi.org/10.1002/anie.202420953

Competitive Adsorption of Xylenes at Chemical Equilibrium in Zeolites

Sebastián Caro-Ortiz, Erik Zuidema, Marcello Rigutto, David Dubbeldam and Thijs J. H. Vlugt
The Journal of Physical Chemistry C 125 (7) 4155 (2021)
https://doi.org/10.1021/acs.jpcc.0c09411

Investigating Unusual Organic Functional Groups to Engineer the Surface Chemistry of Mesoporous Silica to Tune CO2–Surface Interactions

Emily Bloch, Eric Besson, Séverine Queyroy, et al.
ACS Applied Materials & Interfaces 9 (16) 14490 (2017)
https://doi.org/10.1021/acsami.7b00901

Xylene separation on a diverse library of exchanged faujasite zeolites

Yoldes Khabzina, Catherine Laroche, Javier Perez-Pellitero and David Farrusseng
Microporous and Mesoporous Materials 247 52 (2017)
https://doi.org/10.1016/j.micromeso.2017.03.026

Monovalent and bivalent cations exchange isotherms for faujasites X and Y

Y. Khabzina, C. Laroche, C. Pagis and D. Farrusseng
Physical Chemistry Chemical Physics 19 (26) 17242 (2017)
https://doi.org/10.1039/C7CP02051A

Effect of dead volumes on the performance of an industrial‐scale simulated moving‐bed Parex unit for p‐xylene purification

Marta S. P. Silva, Alírio E. Rodrigues and José P. B. Mota
AIChE Journal 62 (1) 241 (2016)
https://doi.org/10.1002/aic.15022

Adsorbent Evaluation Based on Experimental Breakthrough Curves: Separation of p‐Xylene from C8 Isomers

M. S. P. Silva, M. A. Moreira, A. F. P. Ferreira, J. C. Santos, V. M. T. M. Silva, P. Sá Gomes, M. Minceva, J. P. B. Mota and A. E. Rodrigues
Chemical Engineering & Technology 35 (10) 1777 (2012)
https://doi.org/10.1002/ceat.201100672

Simulated Moving Bed Chromatography: From Concept to Proof‐of‐Concept

P. Sá Gomes and A. E. Rodrigues
Chemical Engineering & Technology 35 (1) 17 (2012)
https://doi.org/10.1002/ceat.201100281

Fixed-bed adsorption of aromatic C8 isomers: Breakthrough experiments, modeling and simulation

Marta S.P. Silva, José P.B. Mota and Alírio E. Rodrigues
Separation and Purification Technology 90 246 (2012)
https://doi.org/10.1016/j.seppur.2012.02.034

Solid–Vapor Sorption of Xylenes: Prioritized Selectivity as a Means of Separating All Three Isomers Using a Single Substrate

Matteo Lusi and Leonard J. Barbour
Angewandte Chemie International Edition 51 (16) 3928 (2012)
https://doi.org/10.1002/anie.201109084

Solid–Vapor Sorption of Xylenes: Prioritized Selectivity as a Means of Separating All Three Isomers Using a Single Substrate

Matteo Lusi and Leonard J. Barbour
Angewandte Chemie 124 (16) 3994 (2012)
https://doi.org/10.1002/ange.201109084

Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation

Jinsuk Lee, Nam Cheol Shin, Youngsub Lim and Chonghun Han
Korean Journal of Chemical Engineering 27 (2) 609 (2010)
https://doi.org/10.1007/s11814-010-0078-x

Construction and development of a new single-column simulated moving bed system on the laboratory scale

Kerstin Buhlert, Markus Lehr and Alois Jungbauer
Journal of Chromatography A 1216 (50) 8778 (2009)
https://doi.org/10.1016/j.chroma.2009.10.010

How to Improve the Selectivity of Zeolitic Catalysts in C8Aromatic Cut Isomerization

E. Guillon, S. Lacombe, T. Sozinho, et al.
Oil & Gas Science and Technology - Revue de l'IFP 64 (6) 731 (2009)
https://doi.org/10.2516/ogst/2009030

Pore-Filling-Dependent Selectivity Effects in the Vapor-Phase Separation of Xylene Isomers on the Metal−Organic Framework MIL-47

Vincent Finsy, Harry Verelst, Luc Alaerts, et al.
Journal of the American Chemical Society 130 (22) 7110 (2008)
https://doi.org/10.1021/ja800686c

Understanding and revamping of industrial scale SMB units for p‐xylene separation

Mirjana Minceva and Alírio E. Rodrigues
AIChE Journal 53 (1) 138 (2007)
https://doi.org/10.1002/aic.11062

Influence of Si:Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics

Inge Daems, Philibert Leflaive, Alain Méthivier, Gino V. Baron and Joeri F.M. Denayer
Microporous and Mesoporous Materials 96 (1-3) 149 (2006)
https://doi.org/10.1016/j.micromeso.2006.06.029

Novel Analytical Solution for a Simulated Moving Bed in the Presence of Mass-Transfer Resistance

Viviana M. T. Silva, Mirjana Minceva and Alirio E. Rodrigues
Industrial & Engineering Chemistry Research 43 (16) 4494 (2004)
https://doi.org/10.1021/ie030610i

Influence of the Transfer Line Dead Volume on the Performance of an Industrial Scale Simulated Moving Bed for p-Xylene Separation

Mirjana Minceva and Alirio E. Rodrigues
Separation Science and Technology 38 (7) 1463 (2003)
https://doi.org/10.1081/SS-120019088

Modeling and Simulation of a Simulated Moving Bed for the Separation of p-Xylene

Mirjana Minceva and Alirio E. Rodrigues
Industrial & Engineering Chemistry Research 41 (14) 3454 (2002)
https://doi.org/10.1021/ie010095t

Two experimental methods to study adsorption equilibria of xylene isomers in the liquid phase on a Y zeolite

H. Tournier, A. Barreau, B. Tavitian, et al.
Microporous and Mesoporous Materials 39 (3) 537 (2000)
https://doi.org/10.1016/S1387-1811(00)00229-8