Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 17
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2020012
Published online 26 March 2020
  • Mahi M.R., Ouaar F., Negadi A., Bahadur I., Negadi L. (2018) Excess/deviation properties of binary mixtures of 2,5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 64. [CrossRef] [Google Scholar]
  • Jafari A., Hasani M., Hosseini M., Gharibshahi R. (2019) Application of CFD technique to simulate enhanced oil recovery processes: Current status and future opportunities, Pet. Sci. 1–23. https://doi.org/10.1007/s12182-019-00363-7 [Google Scholar]
  • Hirasaki G.J., Miller C.A., Puerto M. (2008) Recent advances in surfactant EOR, in: IPTC 2008: International Petroleum Technology Conference, 3–5 December, Kuala Lumpur, Malaysia. [Google Scholar]
  • Chen X., Feng Q., Liu W., Sepehrnoori K. (2017) Modeling preformed particle gel surfactant combined flooding for enhanced oil recovery after polymer flooding, Fuel 194, 42–49. [CrossRef] [Google Scholar]
  • Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Vol. 3, HL Doherty Memorial Fund of AIME, New York. [Google Scholar]
  • Kumar N., Mandal A. (2018) Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application, Energy Fuels 32, 6452–6466. [Google Scholar]
  • Shi S., Wang Y., Wang L., Jin Y., Wang T., Wang J. (2015) Potential of spontaneous emulsification flooding for enhancing oil recovery in high-temperature and high-salinity oil reservoir, J. Dispers. Sci. Technol. 36, 660–669. [Google Scholar]
  • Liu S., Zhang D., Yan W., Puerto M., Hirasaki G.J., Miller C.A. (2008) Favorable attributes of alkaline-surfactant-polymer flooding, SPE J. 13, 5–16. [CrossRef] [Google Scholar]
  • Manrique E.J., Thomas C.P., Ravikiran R., Izadi Kamouei M., Lantz M., Romero J.L., Alvarado V. (2010) EOR: current status and opportunities, in:SPE Improved Oil Recovery Symposium, 24–28 April, Tulsa, OK. Society of Petroleum Engineers. [Google Scholar]
  • Puerto M.C. (2001) Surfactants: Fundamentals and Applications in the Petroleum Industry-Cambridge University Press, 2000, pp. 621, @ 85.00 (US 140.00)(hardback), ISBN 0-521-64067-9, Chem. Eng. J. 83, 1, 63. [Google Scholar]
  • Li Y., Zhang W., Kong B., Puerto M., Bao X., Sha O., Shen Z., Yang Y., Liu Y., Gu S. (2016) Mixtures of anionic/cationic surfactants: A new approach for enhanced oil recovery in low-salinity, high-temperature sandstone reservoir, SPE J. 21, 1–164. [CrossRef] [Google Scholar]
  • Ahmadi S., Hosseini M., Tangestani E., Mousavi S.E., Niazi M. (2020) Wettability alteration and oil recovery by spontaneous imbibition of smart water and surfactants into carbonates, Pet. Sci. 1–10. https://doi.org/10.1007/s12182-019-00412-1. [Google Scholar]
  • Dehaghani A.H.S., Badizad M.H. (2019) Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding, Colloids Surf. A Physicochem. Eng. Asp. 568, 470–480. [Google Scholar]
  • Sheng J.J. (2010) Modern chemical enhanced oil recovery: theory and practice, Gulf Professional Publishing, Oxford, UK. [Google Scholar]
  • Flaaten A., Nguyen Q.P., Pope G.A., Zhang J. (2008) A systematic laboratory approach to low-cost, high-performance chemical flooding, in: SPE Symposium on Improved Oil Recovery, 20–23 April, Tulsa, OK. Society of Petroleum Engineers. [Google Scholar]
  • Hirasaki G., Zhang D.L. (2004) Surface chemistry of oil recovery from fractured, oil-wet, carbonate formations, SPE J. 9, 151–162. [CrossRef] [Google Scholar]
  • Rosen M.J. (2004) Emulsification by surfactants, in: Surfactants Interfacial Phenomena, 3rd edn., Wiley, Hoboken, NJ, pp. 303–331. [CrossRef] [Google Scholar]
  • Winsor P.A. (1948) Hydrotropy, solubilisation and related emulsification processes, Trans. Faraday Soc. 44, 376–398. [CrossRef] [Google Scholar]
  • Teh Y.S., Rangaiah G.P. (2002) A study of equation-solving and Gibbs free energy minimization methods for phase equilibrium calculations, Chem. Eng. Res. Des. 80, 745–759. [Google Scholar]
  • Ashrafizadeh S.N., Motaee E., Hoshyargar V. (2012) Emulsification of heavy crude oil in water by natural surfactants, J. Pet. Sci. Eng. 86, 137–143. [Google Scholar]
  • Dadfar B., Biria D. (2015) Application of group contribution–NRTL model with closure to predict LLE behavior of an oil/brine/surfactant system, J. Chem. Eng. Data 60, 2575–2584. [Google Scholar]
  • Jin L., Budhathoki M., Jamili A., Li Z., Luo H., Ben Shiau B.J., Delshad M., Harwell J.H. (2017) Predicting microemulsion phase behavior using physics based HLD-NAC equation of state for surfactant flooding, J. Pet. Sci. Eng. 151, 213–223. [Google Scholar]
  • Privat R., Jaubert J.-N., Privat Y. (2013) A simple and unified algorithm to solve fluid phase equilibria using either the gamma–phi or the phi–phi approach for binary and ternary mixtures, Comput. Chem. Eng. 50, 139–151. [Google Scholar]
  • Panah H.S. (2018) Modeling binary vapor–liquid equilibrium data containing perfluorocarbons using the Peng-Robinson and the PC-SAFT equations of state, Int. J. Refrig. 85, 13–26. [Google Scholar]
  • Li Z., Mumford K.A., Shang Y., Smith K.H., Chen J., Wang Y., Stevens G.W. (2014) Analysis of the nonrandom two-liquid model for prediction of liquid–liquid equilibria, J. Chem. Eng. Data 59, 2485–2489. [Google Scholar]
  • Li Z., Mumford K.A., Smith K.H., Chen J., Wang Y., Stevens G.W. (2016) Solution structure of isoactivity equations for liquid-liquid equilibrium calculations using the nonrandom two-liquid model, Ind. Eng. Chem. Res. 55, 2852–2859. [Google Scholar]
  • Yushan Z.H.U., Zhihong X.U. (1999) A reliable method for liquid-liquid phase equilibrium calculation and global stability analysis, Chem. Eng. Commun. 176, 133–160. [Google Scholar]
  • Dadmohammadi Y., Gebreyohannes S., Neely B.J., Gasem K.A.M. (2018) Application of modified NRTL models for binary LLE phase characterization, Ind. Eng. Chem. Res. 57, 7282–7290. [Google Scholar]
  • Boshkov L.Z., Yelash L.V. (1997) Closed-loops of liquid-liquid immiscibility in binary mixtures predicted from the Redlich-Kwong equation of state, Fluid Phase Equilib. 141, 105–112. [Google Scholar]
  • Sofyan Y., Ghajar A.J., Gasem K.A.M. (2003) A systematic method to predict cloud point temperature and solid precipitation, Pet. Sci. Technol. 21, 409–424. [Google Scholar]
  • Domańska U., Morawski P., Wierzbicki R. (2006) Phase diagrams of binary systems containing n-alkanes, or cyclohexane, or 1-alkanols and 2, 3-pentanedione at atmospheric and high pressure, Fluid Phase Equilib. 242, 154–163. [Google Scholar]
  • Giovanoglou A., Adjiman C.S., Jackson G., Galindo A. (2009) Fluid phase stability and equilibrium calculations in binary mixtures: Part II: Application to single-point calculations and the construction of phase diagrams, Fluid Phase Equilib. 275, 95–104. [Google Scholar]
  • Królikowska M., Karpińska M. (2013) Phase equilibria study of the (N-octylisoquinolinium thiocyanate ionic liquid + aliphatic and aromatic hydrocarbon, or thiophene) binary systems, J. Chem. Thermodyn. 63, 128–134. [Google Scholar]
  • Królikowska M., Karpińska M., Zawadzki M. (2013) Phase equilibria study of (ionic liquid + water) binary mixtures, Fluid Phase Equilib. 354, 66–74. [Google Scholar]
  • Reynel-Ávila H.E., Bonilla-Petriciolet A., Tapia-Picazo J.C. (2019) An artificial neural network-based NRTL model for simulating liquid-liquid equilibria of systems present in biofuels production, Fluid Phase Equilib. 483, 153–164. [Google Scholar]
  • Nasrifar K., Rahmanian N. (2018) Equations of state with group contribution binary interaction parameters for calculation of two-phase envelopes for synthetic and real natural gas mixtures with heavy fractions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 7. [CrossRef] [Google Scholar]
  • Riazi M.R., Moshfeghian M. (2009) A thermodynamic model for LLE behavior of oil/brine/ionic-surfactant/alcohol co-surfactant systems for EOR processes, J. Pet. Sci. Eng. 67, 75–83. [Google Scholar]
  • Cheng H., Kontogeorgis G.M., Stenby E.H. (2005) Correlation and prediction of environmental properties of alcohol ethoxylate surfactants using the UNIFAC method, Ind. Eng. Chem. Res. 44, 7255–7261. [Google Scholar]
  • Qiu T., Li S., Li S., Wu Y. (2009) Liquid–liquid phase equilibria of the ternary system of water/1, 4-dioxane/dihydromyrcene, Fluid Phase Equilib. 280, 84–87. [Google Scholar]
  • Prausnitz J.M., Lichtenthaler R.N., De Azevedo E.G. (1998) Molecular thermodynamics of fluid-phase equilibria, Pearson Education, London, UK. [Google Scholar]
  • Kontogeorgis G.M., Folas G.K. (2009) Thermodynamic models for industrial applications: From classical and advanced mixing rules to association theories, John Wiley & Sons, Hoboken, NJ. [Google Scholar]
  • Sivanandam S.N., Deepa S.N. (2008) Genetic algorithms, in:Introduction to genetic algorithms, Springer, Berlin, Germany, pp. 15–37. [CrossRef] [Google Scholar]
  • Gen M., Cheng R., Lin L. (2008) Network models and optimization: Multiobjective genetic algorithm approach, Springer Science & Business Media, Berlin, Germany. [Google Scholar]
  • Panah H.S., Mohammadi A.H., Ramjugernath D. (2016) Development of a novel approach for modeling acid gas solubility in alkanolamine aqueous solution, J. Nat. Gas Sci. Eng. 34, 112–123. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.