Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 16
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2020007
Published online 20 March 2020
  • Carroll J.J. (2003) Natural gas hydrates: A guide for engineers, Elsevier Science, Amsterdam. [Google Scholar]
  • Sloan E.D., Koh C.A. (2008) Clathrate hydrates of natural gases, CRC Press, Boca Ratton, FL. [Google Scholar]
  • Sloan D., Koh C., Sum A., Ballard A.L., Creek J., Eaton M., Lachance J., Mcmullen N., Palermo T., Shoup G., Talley L. (2010) Natural gas hydrates in flow assurance, Gulf Professional Publishing, Oxford. [Google Scholar]
  • Babakhani S.M., Bouillot B., Ho-Van S., Douzet J., Herri J.-M. (2018) A review on hydrate composition and capability of thermodynamic modeling to predict hydrate pressure and composition, Fluid Phase Equilib. 472, 22–38. [Google Scholar]
  • Buzatoiu B., Popp V.V., Loas I.R. (1999) Hydrate problem in the oil production industry, in: Society of Petroleum Engineers (ed), International Symposium on Oilfield Chemistry, 16–19 February, Houston, TX. No. SPE 50749. [Google Scholar]
  • Jamaluddin A.K.M., Kalogerakis N., Bishnoi P.R. (1991) Hydrate plugging problems in undersea natural gas pipelines under shutdown condition, J. Petrol. Sci. Eng. 5, 323–335. [CrossRef] [Google Scholar]
  • Makogon Y.F. (2010) Natural gas hydrates – a promising source of energy, J. Nat. Gas Sci. Eng. 2, 49–59. [Google Scholar]
  • Chatti I., Delahaye A., Fournaison L., Petitet J. (2005) Benefits and drawbacks of clathrate hydrates: A review of their areas of interest, Energy Convers. Manage. 46, 1333–1343. [CrossRef] [Google Scholar]
  • Collett T., Bahk J.-J., Baker R., Boswell R., Divins D., Frye M., Goldberg D., Husebø J., Koh C., Malone M., Morell M., Myers G., Shipp C., Torres M. (2015) Methane hydrates in nature – current knowledge and challenges, J. Chem. Eng. Data 60, 319–329. [Google Scholar]
  • Javanmardi J., Nasrifar K., Najibi S., Moshfeghian M. (2005) Economic evaluation of natural gas hydrate as an alternative for natural gas transportation, Appl. Therm. Eng. 25, 1708–1723. [Google Scholar]
  • Gudmundsson J., Borrehaug A. (1996) Frozen hydrate for transportation of natural gas, in: Second International Conference on Natural Gas Hydrate, 2–6 June, Toulouse, France, pp. 415–422. [Google Scholar]
  • Kvenvolden K. (1993) A primer on gas hydrates, United States Geological Survey, Reston, VA, pp. 279–292. [Google Scholar]
  • Boswell R., Collett T.S. (2011) Current perspectives on gas hydrate resources, Energy Environ. Sci. 4, 1206–1215. [Google Scholar]
  • Boswell R., Yamamoto K., Lee S.-R., Collett T., Kumar P., Dallimore S. (2014) Methane Hydrates. Future energy: Improved, sustainable and clean options for our planet, Elsevier, London, pp. 159–178. [Google Scholar]
  • Konno Y., Fujii T., Sato A., Akamine K., Naiki M., Masuda Y., Yamamoto K., Nagao J. (2017) Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production, Energy Fuels 31, 3, 2607–2616. [Google Scholar]
  • Koh C.A. (2011) Fundamentals and applications of gas hydrates, Annu. Rev. Chem. Biomol. Eng. 2, 237–257. [CrossRef] [PubMed] [Google Scholar]
  • Zarinabadi S., Samimi A. (2011) Problems of hydrate formation in oil and gas pipes deals, J. Am. Sci. 5, 741–745. [Google Scholar]
  • Sloan E.D. (2005) A changing hydrate paradigm – from apprehension to avoidance to risk management, Fluid Phase Equilib. 228, 67–74. [Google Scholar]
  • Yao S., Li Y., Wang W., Song G., Shi Z., Wang X., Liu S. (2019) Investigation of hydrate slurry flow behaviors in deep-sea pipes with different inclination angles, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 48. [CrossRef] [Google Scholar]
  • Zhao J., Shi D., Zhao Y. (2012) Mathematical model and simulation of gas hydrate reservoir decomposition by depressurization, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 3, 379–385. [CrossRef] [Google Scholar]
  • Lv X.F., Shi B.H., Wang Y., Tang Y.X., Wang L.Y., Gong J. (2015) Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 1111–1124. [CrossRef] [Google Scholar]
  • Cochran S. (2003) Hydrate control and remediation best practices in deepwater oil developments, in: Offshore Technology Conference, 5–8 May, Houston, TX. No. OTC 15255. [Google Scholar]
  • Fink J. (2016) Guide to the practical use of chemicals in refineries and pipelines, Gulf Professional Publishing, Oxford. [Google Scholar]
  • Daraboina N., Pachitsas S., Solms N.V. (2015) Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems, Fuel 148, 186–190. [CrossRef] [Google Scholar]
  • Iida T., Mori H., Mochizuki T., Mori Y.H. (2001) Formation and dissociation of clathrate hydrate in stoichiometric tetrahydrofuran–water mixture subjected to one-dimensional cooling or heating, Chem. Eng. Sci. 56, 16, 4747–4758. [Google Scholar]
  • Rueff R.M., Sloan E.D. (1985) Effect of granular sediment on some thermal properties of tetrahydrofuran hydrate, Ind. Eng. Chem. Process Des. Dev. 24, 3, 882–885. [CrossRef] [Google Scholar]
  • Gough S.R., Davidson D.W. (1971) Composition of tetrahydrofuran hydrate and the effect of pressure on the decomposition, Can. J. Chem. 49, 16, 2691–2699. [Google Scholar]
  • Silva P.H.L., Naccache M.F., de Souza Mendes P.R., Campos F.B., Teixeira A., Sum A.K. (2017) Rheology of tetrahydrofuran hydrate slurries, Energy Fuels 31, 12, 14385–14392. [Google Scholar]
  • Austvik T. (1992) Hydrate formation and behavior in pipes, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway. [Google Scholar]
  • Zhang H., Du J., Wang Y., Lang X., Li G., Chen J., Fan S. (2018) Investigation into thf hydrate slurry flow behaviour and inhibition by an anti-agglomeran, RSC Adv. 8, 22, 11946–11956. [Google Scholar]
  • Majid A.A.A., Wu D.T., Koh C.A. (2018) A perspective on rheological studies of gas hydrate slurry properties, Engineering 4, 3, 321–329. [CrossRef] [Google Scholar]
  • Strauch B., Schicks J.M., Luzi-Helbing M., Naumann R., Herbst M. (2018) The difference between aspired and acquired hydrate volumes – a laboratory study of thf hydrate formation in dependence on initial THF:H2O ratios, J. Chem. Thermodyn. 117, 193–204. [Google Scholar]
  • Lv X., Shi B., Wang Y., Gong J. (2013) Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system, Energy Fuels 27, 12, 7294–7302. [Google Scholar]
  • Li Z.-Y., Xia Z.-M., Chen Z.-Y., Li X.-S., Xu C.-G., Yan R. (2019) The plateau effects and crystal transition study in tetrahydrofuran (THF)/CO2/H2 hydrate formation processes, Appl. Energy 238, 195–201. [Google Scholar]
  • Qin Y., Aman Z.M., Pickering P.F., Johns M.L., May E.F. (2017) High pressure rheological measurements of gas hydrate-in-oil slurries, J. Non-Newt. Fluid Mech. 248, 40–49. [CrossRef] [Google Scholar]
  • Ahuja A., Zylyftari G., Morris J.F. (2015) Modeling oilfield emulsions: Comparison of cyclopentane hydrate an ice, Energy Fuels 29, 6286–6295. [Google Scholar]
  • Ahuja A., Zylyftari G., Morris J.F. (2015) Yield stress measurements of cyclopentane hydrate slurry, J. Non-Newt. Fluid Mech. 220, 116–125. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.