Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 8
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2019067
Published online 24 February 2020
  • Adewunmi A.A., Ismail S., Sultan A.S. (2018) Crosslinked polyacrylamide composite hydrogels impregnated with fly ash: Synthesis, characterization and their application as fractures sealant for high water producing zones in oil and gas wells, J. Polym. Environ. 12, 1–13. doi: 10.1007/s10924-018-1204-9. [Google Scholar]
  • Albonico P., Burrafato G., Di-Lullo A., Lockhart T.P. (1993) Effective gelation-delaying additives for Cr3+/Polymer gels, in: SPE International Symposium on Oilfield Chemistry, 2–5 March 1993, New Orleans, LA. doi: 10.2118/25221-MS [Google Scholar]
  • Alfarge D., Wei M., Bai B., Almansour A. (2018) Numerical simulation study to understand the performance of RPM gels in water-shuttoff treatments, J. Pet. Sci. Eng. 171, 818–834. doi: 10.1016/j.petrol.2018.07.082. [Google Scholar]
  • Ali A.S. (2010) Mature fields and well revitalization, J. Pet. Technol. 62, 1, 1–2. doi: 10.2118/0110-0048-JPT. [Google Scholar]
  • Al-Muntasheri G.A. (2012) Conformance control with polymer gels: What it takes to be successful, Arab. J. Sci. Eng. 37, 4, 1131–1141. doi: 10.1007/s13369-012-0234-1. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A., Hussein I.A., Nasr-El-Din H.A., Amin M.B. (2007) Viscoelastic properties of a high temperature cross-linked water shut-off polymeric gel, J. Pet. Sci. Eng. 55, 2, 56–66. doi: 10.1016/j.petrol.2006.04.004. [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Peters J.A., Zitha P.L.J. (2008a) Thermal decomposition and hydrolysis of polyacrylamide-co-tert-butyl acrylate, Eur. Polym. J. 44, 4, 1225–1237. doi: 10.1016/j.eurpolymj.2008.01.022. [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Zitha P.L.J. (2008b) Gelation kinetics and performance evaluation of an organically crosslinked gel at high temperatures and pressure, SPE J. 13, 3, 337–345. doi: 10.2118/104071-PA. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Al-Noaimi K., Zitha P.L.J. (2009) A study of polyacrylamide-based gels crosslinked with polyethyleneimine, SPE J. 14, 2, 245–251. doi: 10.2118/105925-PA. [CrossRef] [Google Scholar]
  • Al-Nakhli A., Al-Muntasheri G., Al-Harith A., Balharth S. (2013) Benchmarking RPMs performance to reduce water-oil ratio of produced fluids from carbonate formations, in: SPE Saudi Arabia Section Technical Symposium and Exhibition, 19–22 May, Al-Khobar, Saudi Arabia. SPE-168085-MS. doi: 10.2118/168085-MS [Google Scholar]
  • Alsheri A.J., Wang J., Kwak H.T., Alsofi A.M., Gao J. (2019) A study of gel-based conformance control within fractured carbonate cores using low-field nuclear-magnetic-resonance techniques, Soc. Pet. Eng. 22, 3, 1–12. doi: 10.2118/187397-PA. [Google Scholar]
  • American Petroleum Institute (1982) The sources, chemistry, fate, and effects of chromium in aquatic environments, Washington, DC, 191 p. [Google Scholar]
  • Bai B., Zhou J., Yin M. (2015a) A comprehensive review of polyacrylamide polymer gels for conformance control, Petrol. Explor. Dev. 42, 4, 525–532. doi: 10.1016/S1876-3804(15)30045-8. [CrossRef] [Google Scholar]
  • Bai Y., Xiong C., Wei F., Li J., Shu Y., Liu D. (2015b) Gelation Study on a hydrophobically associating polymer/polyethylenimine gel system for water shut-off treatment, Energy Fuels 29, 2, 447–458. doi: 10.1021/ef502505k. [Google Scholar]
  • Bryant S.L., Borghi G.P., Bartosek M., Lockhart T.P. (1997) Experimental investigation on the injectivity of phenol-formaldehyde/polymer gelants, Society of Petroleum Engineers, Houston, TX. [Google Scholar]
  • Cai W., Huang R. (2001) Study on gelation of partially hydrolyzed polyacrylamide with titanium (IV), Eur. Polym. J. 37, 8, 1553–1559, ago. 2001. doi: 10.1016/S0014-3057(01)00041-6. [Google Scholar]
  • Chang P., Gruetzmacher G., Meltz C., Totino R. (1984) Enhanced hydrocarbon recovery by permeability modification with phenolic gels. US4708974A, 01 out. 1984. [Google Scholar]
  • Chen L., Wang J., Yu L., Zhang Q., Fu M., Zhao Z., Zuo J. (2018) Experimental investigation on nano-silica reinforcing PAM/PEI hydrogel for water shutoff treatment, Energy Fuels 33, 1, 1–16. doi: 10.1021/acs.energyfuels.8b00840. [Google Scholar]
  • Cheng M., Wang C., Mccool C.S., Green D.W., Willhite G.P. (2005) Modeling of pre-gel aggregate growth during the gelation of polyacrylamide-chromium (III) acetate gel system using the theory of branching processes, Society of Petroleum Engineers, The Woodlands, TX. [Google Scholar]
  • Chung T., Bae W., Nguyen N.T.B., Dang C.T.Q., Lee W., Jung B. (2011) A review of polymer conformance treatment: A successful guideline for water control in mature fields, Energy Sources Part A Recovery Utilization Env. Eff. Londres 34, 2, 122–133. doi: 10.1080/15567030903567683. [CrossRef] [Google Scholar]
  • Dang T.Q.C., Chen Z., Nguyen T.B.N., Bae W., Chung T., Tu T.N. (2014) The development and optimization of a polymer conformance control technology in mature reservoirs: Laboratory experiments vs. field scale simulation, Energy Sources Part A Recovery Utilization Env. Effects 36, 11, 1219–1233. doi: 10.1080/15567036.2010.551259. [CrossRef] [Google Scholar]
  • Dovan H.T., Hutchins R.D., Sandiford B.B. (1997) Delaying gelation of aqueous polymer at elevated temperatures using novel organic crosslinkers, Society of Petroleum Engineers, Houston, TX. [Google Scholar]
  • El-Hoshoudy A.N., Desouky S.E.M., Elkady M.Y., Al-Sabagh A.M., Betiha M.A., Mahmoud S. (2017) Hydrophobically associated polymers for wettability alteration and enhanced oil recovery – Article review, Egypt. J. Pet. 26, 3, 757–762. doi: 10.1016/j.ejpe.2016.10.008. [CrossRef] [Google Scholar]
  • El-Karsani K.S.M., Al-Muntasheri G.A., Hussein I.A. (2014a) Polymer Systems for water shutoff and profile modification: A review over the last decade, SPE J. 19, 1, 135–149. doi: 10.2118/163100-PA. [CrossRef] [Google Scholar]
  • El-Karsani K.S.M., Al-Muntasheri G.A., Sultan A.S., Hussein I.A. (2014b) Gelation kinetics of PAM/PEI system: DSC investigation, J. Therm. Anal. Calorim. 116, 3, 1409–1415. doi: 10.1007/s10973-014-3754-y. [Google Scholar]
  • El-Karsani K.S.M., Al-Muntasheri G.A., Sultan A.S., Hussein I.A. (2014c) Gelation of a water-shutoff gel at high pressure and high temperature: Rheological investigation, SPE J. 20, 5, 1–10. [Google Scholar]
  • Fang J., Zhang X., He L., Zhao G., Dai C. (2017) Experimental research of hydroquinone (HQ)/hexamethylene tetramine (HMTA) gel for water plugging treatments in high-temperature and high-salinity reservoirs, J. Appl. Polym. Sci. 134, 1, 44359–44367. doi: 10.1002/app.44359. [Google Scholar]
  • Fletcher A.J.P., Flew S., Forsdyke I.N., Morgan J.C., Rogers C., Suttles D. (1992) Deep diverting gels for very cost-effective waterflood control, J. Pet. Sci. Eng. 7, 1, 33–43. [Google Scholar]
  • Ghazalli H.A., Willhite G.P. (1985) Permeability modification using aluminum citrate/polymer treatments: Mechanisms of permeability reduction in sandpacks, Society of Petroleum Engineers, Phoenix, AZ. [Google Scholar]
  • Ghriga M.A., Grassl B., Gareche M., Khodja M., Lebouachera S.E.I., Andreu N., Drouiche N. (2019) Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications, Polym. Bull. 76, 11, 6001–6029. doi: 10.1007/s00289-019-02687-1. [CrossRef] [Google Scholar]
  • Goudarzi A., Zhang H., Varavei A., Taksaudom P., Hu Y., Delshad M., Bai B., Sepehrnoori K. (2015) A laboratory and simulation study of preformed particle gels for water conformance control, Fuel 140, 502–513. doi: 10.1016/j.fuel.2014.09.081. [CrossRef] [Google Scholar]
  • Grattoni C.A., Al-Sharji H.H., Yang C., Muggeridge A.H., Zimmerman R.W. (2001) Rheology and permeability of crosslinked polyacrylamide gel, J. Colloid Interface Sci. 240, 2, 601–607. [Google Scholar]
  • Guan H., Berkland C., Moradi-Araghi A., Liang J.-T., Christian T., Needham R., Cheng M., Scully F.L., Hedges J. (2014) Nanogels for delayed gelation. US20140202693 A1, 30 dez. 2013, 24 jul. 2014. [Google Scholar]
  • Hardy M.B., Botermans C.W., Smith P. (1998) New organically crosslinked polymer system provides competent propagation at high temperature in conformance treatments, in: SPE/DOE Improved Oil Recovery Symposium, 19–22 April, Tulsa, OK. [Google Scholar]
  • Hardy M., Botermans W., Hamouda A., Valdal J., Warren J. (1999) The first carbonate field application of a new organically crosslinked water shutoff polymer system, Society of Petroleum Engineers, Houston, TX, pp. 16–19. doi: 10.2118/50738-MS. [Google Scholar]
  • Hashmat M.D., Sultan A.S., Rahman S., Hussain S.M.S. (2016) Crosslinked polymeric gels as loss circulation materials: An experimental study, Society of Petroleum Engineers, Arábia Saudita. doi: 10.2118/182740-MS. [Google Scholar]
  • Hutchins R.D., Dovan H.T., Sandiford B.B. (1996) Field applications of high temperature organic gels for water control, Society of Petroleum Engineers, Tulsa, OK. [Google Scholar]
  • Imqam A., Bai B. (2015) Optimizing the strength and size of preformed particle gels for better conformance control treatment, Fuel 148, 178–185. doi: 10.1016/j.fuel.2015.01.022. [CrossRef] [Google Scholar]
  • Jayakumar S., Lane R.H. (2012) Delayed crosslink polymer flowing gel system for water shutoff in conventional and unconventional oil and gas reservoirs, Society of Petroleum Engineers, Lafayette, LA. doi: 10.2118/151699-MS. [Google Scholar]
  • Jayakumar S., Lane R.H. (2013) Delayed crosslink polymer gel system for water shutoff in conventional and unconventional oil and gas reservoirs, Society of Petroleum Engineers, The Woodlands, TX. doi: 10.2118/164046-MS. [Google Scholar]
  • Jia H., Chen H. (2018) Using DSC technique to investigate the non-isothermal gelation kinetics of the multi-crosslinked chromium acetate (Cr3+)-Polyethyleneimine (PEI)-polymer gel sealant, J. Pet. Sci. Eng. 165, 1, 105–113. doi: 10.1016/j.petrol.2018.01.082. [Google Scholar]
  • Jia H., Pu W., Zhao J., Jin F. (2010) Research on the gelation performance of low toxic PEI crosslinking PHPA gel systems as water shutoff agents in low temperature reservoirs, Ind. Eng. Chem. Res. 49, 20, 9618–9624. doi: 10.1021/ie100888q. [Google Scholar]
  • Jia H., Zhao J., Jin F., Pu W., Li Y., Li K., Li J. (2012) New insights into the gelation behavior of polyethyleneimine crosslinking partially hydrolyzed polyacrylamide gels, Ind. Eng. Chem. Res. 51, 38, 12155–12166. doi: 10.1021/ie301818f. [Google Scholar]
  • Johnson S., Trejo J., Veisi M., Willhite G.P., Liang J., Berkland C. (2010) Effects of divalent cations, seawater, and formation brine on positively charged polyethylenimine/dextran sulfate/chromium (III) polyelectrolyte complexes and partially hydrolyzed polyacrylamide/chromium (III) gelation, J. Appl. Polym. Sci. 115, 2, 1008–1014. doi: 10.1002/app.31052. [Google Scholar]
  • Kedir A.S., Seland J.G., Skauge A., Skauge T. (2014) Nanoparticles for enhanced oil recovery: Influence of pH on aluminum-cross-linked partially hydrolyzed polyacrylamide-investigation by rheology and NMR, Energy Fuels 28, 4, 2343–2351. doi: 10.1021/ef402376q. [Google Scholar]
  • Koohi A.D., Seftie M.V., Ghalam A.Z., Moghadam A.M., Sabet S.Z. (2010) Rheological characteristics of sulphonated polyacrylamide/chromium triacetate hydrogels designed for water shut-off, Iran. Polym. J. 19, 10, 757–770. [Google Scholar]
  • Lakatos I., Lakatos-Szabó J. (2008) Global oil demand and role of chemical EOR methods in the 21st century, Int. J. Oil Gas Coal Technol. 1, 2, 46–64. doi: 10.1504/IJOGCT.2008.016731. [CrossRef] [Google Scholar]
  • Lashari Z.A., Yang H., Zhu Z., Tang X., Cao C., Iqbal M.W., Kang W. (2018) Experimental research of high strength thermally stable organic composite polymer gel, J. Mol. Liq. 263, 1, 118–124. doi: 10.1016/j.molliq.2018.04.146. [Google Scholar]
  • Lenji M.A., Haghshenasfard M., Sefti M.V., Salehi M.B., Heidari A. (2018) Experimental study of swelling and rheological behavior of preformed particle gel used in water shutoff treatment, J. Pet. Sci. Eng. 169, 739–747. doi: 10.1016/j.petrol.2018.06.029. [Google Scholar]
  • Liu Y., Bai B., Wang Y. (2010) Applied technologies and prospects of conformance control treatments in China, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 6, 859–878. doi: 10.2516/ogst/2009057. [CrossRef] [Google Scholar]
  • Liu Y., Dai C., Wang K., Zhao M., Zhao G., Yang S., Yan Z., You Q. (2016) New insights into the hydroquinone (HQ)-hexamethylenetetramine (HMTA) gel system for water shutt-off treatment in high temperature reservoirs, J. Ind. Eng. Chem. 35, 1, 20–28. doi: 10.1016/j.jiec.2015.09.032. [Google Scholar]
  • Ma Q., Shuler P.J., Aften C.W., Tang Y. (2015) Theoretical studies of hydrolysis and stability of polyacrylamide polymers, Polym. Degrad. Stabil. 121, 1, 69–77. doi: 10.1016/j.polymdegradstab.2015.08.012. [CrossRef] [Google Scholar]
  • Ma L., Wang S., Long Y., Zhu C., Yang H., Yang T., Liu X., Li X., Bai B., Kang W. (2017) Novel environmentally benign hydrogel: Nano-silica hybrid hydrolyzed polyacrylamide/polyethyleneimine gel system for conformance improvement in high temperature high salinity reservoir, Society of Petroleum Engineers, Abu Dhabi. doi: 10.2118/188654-MS. [Google Scholar]
  • Manrique E.J., Garmeh G., Izadi M., Salehi M., Romero J.L., Aye N.M., Thomas C., Shevelev P. (2012) In-depth sweep efficiency improvement: Screening criteria and engineering approach for pattern evaluation and potential field implementation, Society of Petroleum Engineers, Moscow. doi: 10.2118/160749-RU. [Google Scholar]
  • Moghagam A.M., Sefti M.V., Salehi M.B., Naderi H. (2014) Bulk and rheological properties of polyacrylamide hydrogels for water shutoff treatment, Korean J. Chem. Eng. 31, 3, 532–539. doi: 10.1007/s11814-013-0242-1. [Google Scholar]
  • Moradi-Araghi A. (1993) Gelation of acrylamide-containing polymers with aminobenzoic acid compounds and water dispersible aldehydes. US5179136A, 10 set. 1990, 12 jan. 1993. [Google Scholar]
  • Moradi-Araghi A. (2000) A review of thermally stable gels for fluid diversion in petroleum production, J. Pet. Sci. Eng. 26, 1–4, 1–10. doi: 10.1016/S0920-4105(00)00015-2. [Google Scholar]
  • Moradi-Araghi A., Beardmore D.H., Stahl G.A. (1988) The application of gels in enhanced oil recovery: Theory, polymers and crosslinker systems, Water-Soluble Polym. Petrol. Recovery 1, 1, 299–312. [CrossRef] [Google Scholar]
  • Mumallah N., Shioyama T. (1987) Permeability contrast correction employing a sulfate-free propionate-sequestered chromium (III) solution. US4644073A, 11 mar. 1985, 17 fev. 1987. [Google Scholar]
  • Needham R.B., Threlkeld C.B., Gall J.W. (1974) Control of water mobility using polymers and multivalent cations, Society of Petroleum Engineers, Tulsa, OK. [Google Scholar]
  • Powell P., Singleton M., Sorbie K. (2004) Combined scale inhibitor and water control treatment. US20040154799A1, 06 fev. 2003, 12 ago. 2004. [Google Scholar]
  • Reichenbach-Klinke R., Langlotz B., Wenzke B., Spindler C., Brodt G. (2011) Associative copolymer with favorable properties for the application in polymer flooding, Society of Petroleum Engineers, The Woodlands, TX. doi: 10.2118/141107-MS. [Google Scholar]
  • Romero-Zerón L.B., Hum F.M., Kantzas A. (2008) Characterization of crosslinked gel kinects and gel strength by use of NMR, SPE Reserv. Evalu. Eng. 11, 3, 439–453. doi: 10.2118/86548-PA. [CrossRef] [Google Scholar]
  • Routson W., Caldwell A. (1972) Method and composition on for controlling flow through subterranean formations. US3701384A, 11 mar. 1971, 31 out. 1972. [Google Scholar]
  • Sengupta B., Sharma V.P., Udayabhanu G. (2012) Gelation studies of an organically cross-linked polyacrylamide water shut-off gel system at different temperatures and pH, J. Pet. Sci. Eng. 81, 1, 145–150. doi: 10.1016/j.petrol.2011.12.016. [Google Scholar]
  • Sengupta B., Sharma V.P., Udayabhanu G. (2014) In-situ gelation studies of an eco-friendly cross-linked polymer system for water shut-off at high temperatures, Energy Sources Part A Recovery Utilization Env. Effects 36, 13, 1445–1467. doi: 10.1080/15567036.2011.553661. [CrossRef] [Google Scholar]
  • Seright R.S. (1991) Impact of dispersion on gel placement for profile control, SPE Reserv. Eng. 6, 3, 343–452. doi: 10.2118/20127-PA. [CrossRef] [Google Scholar]
  • Seright R.S., Liang J., Lindquist W.B., Dunsmuir J.H. (2003) Use of X-ray computed microtomography to understand why gels reduce relative permeability to water more than that to oil, J. Pet. Sci. Eng. 39, 3–4, 217–230. doi: 10.1016/S0920-4105(03)00064-0. [Google Scholar]
  • Sheng J.J. (2010) Modern chemical enhanced oil recovery, Gulf Publishing Company, Houston, TX. [Google Scholar]
  • Shibayama M., Tanaka T. (1993) Volume phase transition and related phenomena of polymer gels, in: Dušek K. (ed), Responsive gels: Volume transitions I, Springer, Berlin, pp. 1–62. doi: 10.1007/3-540-56791-7_1. [Google Scholar]
  • Southwell G.P., Posey S.M. (1994) Applications and results of acrylamide-polymer/chromium (III) carboxylate gels, in: SPE/DOE Improved Oil Recovery Symposium, 17–20 April, Tulsa, OK. SPE 27779-MS. doi: 10.2118/35381-MS. [Google Scholar]
  • Stavland A., Jonsbraten H.C. (1996) New insights into aluminium citrate/polyacrylamide gels for fluid control, Society of Petroleum Engineers, Tulsa, OK. doi: 10.2118/35381-MS. [Google Scholar]
  • Sun F., Lin M., Dong Z., Zhu D., Wang S.L., Yang J. (2016) Effect of composition of PHPA/chromium (III) acetate gels on delayed gelation time, J. Dispers. Sci. Technol. 37, 6, 753–759. doi: 10.1080/01932691.2015.1041034. [Google Scholar]
  • Sydansk R.D. (1988) A new conformance-improvement-treatment chromium(III) gel technology, Society of Petroleum Engineers, Tulsa, OK. doi: 10.2118/17329-MS. [Google Scholar]
  • Sydansk R.D., Moore P.E. (1992) Gel conformance treatments increase oil production in Wyoming, Oil Gas J. 90, 40–45. [Google Scholar]
  • Tessarolli F.G.C., Queirós Y.G.C., Elias Mansur C.R. (2014) Evaluation oh pH-Sensitive hydrogels to control the permeability anisotropy of oil reservoirs, J. Appl. Polym. Sci. 131, 17, 40665–40676. doi: 10.1002/app.40665. [Google Scholar]
  • Tessarolli F.G.C., Souza S.T.S., Gomes A.S., Elias Mansur C.R. (2019) Influence of polymer structure on the gelation kinetics and gel strength of acrylamide-based copolymers, bentonite and polyethylenimine systems for conformance control of oil reservoirs, J. Appl. Polym. Sci. 136, 22, 47556–47569. doi: 10.1002/app.47556. [Google Scholar]
  • Thomas A., Gaillard N., Favero C. (2012) Some key features to consider when studying acrylamide-based polymers for chemical enhanced oil recovery, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 6, 887–902. doi: 10.2516/ogst/2012065. [CrossRef] [Google Scholar]
  • Tongwa P., Baojun B. (2015) A more superior preformed particle gel with potential application for conformance control in mature oilfields, J. Petrol. Explor. Prod. Technol. 5, 2, 201–210. doi: 10.1007/s13202-014-0136-8. [CrossRef] [Google Scholar]
  • Tongwa P., Nygaard R., Bai B. (2012) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: Design, synthesis, and characterization, J. Appl. Polym. Sci. 128, 1, 787–794. doi: 10.1002/app.38258. [Google Scholar]
  • Vargas-Vasquez S.M., Romero-Zerón L.B. (2008) A review of the partly hydrolyzed polyacrylamide Cr(III) acetate polymer gels, J. Pet. Sci. Technol. 26, 4, 481–498. doi: 10.1080/10916460701204594. [CrossRef] [Google Scholar]
  • Wever D.A.Z., Picchioni F., Broekhuis A.A. (2011) Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution, Prog. Polym. Sci. 36, 11, 1558–1628. doi: 10.1016/j.progpolymsci.2011.05.006. [Google Scholar]
  • Yadav U.S., Mahto V. (2013a) Modeling of partially hydrolyzed polyacrylamide-hexamine-hydroquinone gel system used for profile modification jobs in the oil field, J. Pet. Eng. 2, 1, 1–11. doi: 10.1155/2013/709248. [Google Scholar]
  • Yadav U.S., Mahto V. (2013b) Rheological study of partially hydrolyzed polyacrylamide-hexamine-pyrocatechol gel system, Int. J. Ind. Chem. 4, 1, 1–8. doi: 10.1186/2228-5547-4-8. [CrossRef] [Google Scholar]
  • Yadav U.S., Mahto V. (2013c) Investigating the effect of several parameters on the gelation behavior of partially hydrolyzed polyacrylamide−hexamine−hydroquinone gels, Ind. Eng. Chem. Res. 52, 28, 9532–9537. doi: 10.1021/ie400488a. [Google Scholar]
  • Yavari-Gohar M.R., Kabiri K., Zohuriaan-Mehr M.J., Hashemi S.A. (2010) Thermo-hydrolytic stability of swelling capacity of superabsorbing composite hydrogels based on AMPS and acrylamide, J. Polym. Res. 17, 2, 151–159. doi: 10.1007/s10965-009-9301-z. [CrossRef] [Google Scholar]
  • Zhang L., Pu C., Sang H., Zhao Q. (2015a) Mechanism study of the crosslinking reaction of hydrolyzed polyacrylamide/Ac3Cr in formation water, Energy Fuels 29, 8, 4701–4710. doi: 10.1021/acs.energyfuels.5b00149. [Google Scholar]
  • Zhang G., Chen L., Ge J., Jiang P., Zhu X. (2015b) Experimental research of syneresis mechanism of PHPA/Cr3+ gel, Colloids Surf. A Physicochem. Eng. Aspects 483, 1, 96–103. doi: 10.1016/j.colsurfa.2015.07.048. [CrossRef] [Google Scholar]
  • Zhang L., Jing C., Liu J., Nasir K. (2017) A study on a copolymer gelant with high temperature resistance for conformance control, J. Energy Res. Technol. 140, 3, 32907–32914. doi: 10.1115/1.4038196. [CrossRef] [Google Scholar]
  • Zhao J., Jia H., Pu W., Liao R. (2011) Influences of fracture aperture on the water-shutoff performance of polyethyleneimine crosslinking partially hydrolyzed polyacrylamide gels in hydraulic fractured reservoirs, Energy Fuels 25, 6, 2616–2624. doi: 10.1021/ef200461m. [Google Scholar]
  • Zhu D., Hou J., Wei Q., Chen Y., Peng K. (2017a) Development of a high-temperature resistant polymer gel system for conformance control in Jidong oilfield, Society of Petroleum Engineers, Indonesia. doi: 10.2118/186235-MS. [Google Scholar]
  • Zhu D., Bai B., Hou J. (2017b) Polymer gel systems for water management in high-temperature petroleum reservoirs: A chemical review, Energy Fuels 31. 12, 13063–13087. doi: 10.1021/acs.energyfuels.7b02897. [Google Scholar]
  • Zhu D., Hou J., Wei Q., Wu X., Bai B. (2017c) Terpolymer gel system formed by resorcinol-hexamethylenetetramine for water management in extremely high-temperature reservoirs, Energy Fuels 31, 2, 1519–1528. doi: 10.1021/acs.energyfuels.6b03188. [Google Scholar]
  • Zhu D., Hou J., Chen Y., Zhao S., Bai B. (2018) In-situ surface decorated polymer microsphere technology for enhanced oil recovery in high-temperature petroleum reservoirs, Energy Fuels 32, 3, 3312–3321. doi: 10.1021/acs.energyfuels.8b00001. [Google Scholar]
  • Zhu D., Hou J., Chen Y., Wei Q., Zhao S., Bai B. (2019) Evaluation of terpolymer-gel systems crosslinked by polyethylenimine for conformance improvement in high-temperature reservoirs, Soc. Pet. Eng. 24, 4, 1–15. doi: 10.2118/194004-PA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.