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Abstract. The central contribution of this work is the development of a ‘‘master’’ solution similar to the Theis
solution to evaluate well responses under subdiffusive flow. Models based on subdiffusion employ fractional
constitutive laws, a redefinition of Darcy’s law. Subdiffusive models discussed here are particularly useful to
address situations where the internal architecture of the geological medium, such as fluvial and fractured
systems, matters and where the existence of topological, geometrical and spatial influences result in distorted
flow paths and a loss in connectivity. The developed solution provides the means for addressing these ends.

Nomenclature

c Compressibility (LT2/M)
C Unit storage factor (ML2/T2)
d Distance (Ln, n = 1, 2 or 3)
df Hausdorff dimension
dw Anomalous diffusion coefficient

(random walk dimension)
c
0Da

t cf ðtÞ Caputo operator
~F ðsÞ Function to incorporate naturally

fractured reservoir formulation
h Thickness [L]
H m;n

p;q ½xj
ða1;A1Þ;:::;ðap;ApÞ
ðb1;B1Þ;:::;ðbq;BqÞ� Fox function

KmðzÞ Modified Bessel function; second
kind of order m

k Permeability [L2]
~k See equation (2)
Lf One-half the length of hydraulic

fracture [L]
‘ Reference length [L]
p Pressure [M/L/T2]
q Rate [L3/T]
R Real part of a number
r Distance [L]
t Time [T]
s Laplace variable [1/T]
~S Skin factor
S Skin factor of Hawkins
x,y Coordinates [L]

z A complex function
a Exponent; see equation (1)
�(�) Gamma function
c Euler’s constant (0.5772. . .)
g Diffusivity; various
~g ‘‘Diffusivity’’; see equation (7) [L2=T a]
h scaling variable; see equation (34)
k Mobility [L T/M]
l Viscosity [M/L/T]
/ Porosity [L3/L3]
w(x) Digamma function

Subscripts
D Dimensionless
f Hydraulic fracture
i Initial
sf Sandface
t Total
u Unit well
w Well, wellbore

Superscripts
– Laplace transform

1 Introduction

Forecasts, assessments and evaluations of subsurface
resources whether they be hydrocarbon production or
geothermal extraction (Arps, 1945; Fetkovich, 1980;
Whiting andRamey, 1969), sequestrationandwaste disposal* Corresponding author: raghavan.raj@gmail.com
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technologies (Bodvarsson et al. 1999; IPCC, 2005) or ground-
water systems require discernment of flow and transport
mechanisms.The Theis (1935) solution has been the linchpin
to assess the flow properties of the reservoir rock (aquifer).
Both its adequacy and its limits have been of interest and
tested over the years by statistical techniques because it
ignores the influence of spatial variability within its support
volume (Romeu and Noetinger, 1995; Sanchez-Vila et al.,
2006; Schad and Teutsch, 1994; Warren and Price, 1961).
Ignoring internal architecture, geologic structure and inter-
nal imprint such as stratification, intercalations and barriers
that produce distorted flow paths, however, results in a
serious underestimation of the resource (Raghavan, 2004,
2009b; Thomas et al., 2005). Other approaches that account
for spatial variability have represented transient diffusion by
representing the porous medium as a fractal object
(Camacho-Velázquez et al., 2008; Chang and Yortsos,
1990; Raghavan, 2009a). This approach is particularly
fruitful because it has been suggested (Kim et al., 2015;
Raghavan, 2011) and shown (Benson et al., 2004; Chu
et al., 2017, 2018) that there is an interdependence between
the topological and geometric properties of the reservoir rock
and the physics of fluid movement particulary if the geology
is complex. This hypothesis leads to the consideration that
diffusion is anomalous and a reconsideration of Darcy’s
law; see for example, Nigmatullin (1984, 1986), Le Me~haute~
(1984), Dassas and Duby (1995), Henry et al. (2010) to name
a few of the many such citations. Anomalous diffusion
implies a nonlinear scaling of the mean square displacement
of the transient front with time. Well responses often display
power-law behavior (Chang and Yortsos, 1990; Raghavan
and Chen, 2013a).

The goal of this study is to explore the development and
application of interference tests for subdiffusive flows. The
first step involves examination of the Theis (1935) solution
for subdiffusive flow. Although such a solution has been
available for some time, the solution is rarely recognized
probably because it was presented as an aside to the study
of fractured wells (Raghavan, 2012). We flesh out the details
of the solution as they are not yet available and more
importantly present a correlation in the manner of Theis
(1935) as a ‘‘working’’ solution. In addition, we examine
new developments that have appeared in the literature
and indicate adjustments that need to be made if the goal
is to model subdiffusive flow (Su et al., 2015). We then
examine pressure distributions by injecting through a
vertical fracture along the lines proposed in Uraiet et al.
(1977) as the active (pumping) well is often stimulated by
a vertical fracture.

The model discussed in this work is a viable option to
evaluate well tests in fluvial (and fractured) systems that
display near power-law behaviors; indeed, they avoid
conjuring up geological options where we would tend to
look askance at analyses.

2 Problem statement

We proceed in the usual way by considering the flow of
a slightly compressible fluid of compressibility, c, and

viscosity, l, to a well of radius, rw, located at the origin of
a reservoir of constant thickness, h, that is at initial pressure,
pi, and infinite in its areal extent. The well center is taken to
be the origin and the fluid properties are assumed to be con-
stant. Again, as usual, we formulate the problem by combin-
ing the conservation equation, the flux law for subdiffusive
flow and the equation of state for a slightly compressible
fluid. The solution is developed in terms of the Laplace
transformation in the cylindrical coordinate system presum-
ing symmetry under the assumptions that the well pene-
trates the reservoir completely and is produced (pumped)
at a constant rate, q. Thus, except for the flux law, a frac-
tional form of Darcy’s law, we consider the standard prob-
lem. We work in terms of the Laplace transformation and
denote the Laplace variable by the symbol, s. As a result,
the ideas of Warren and Root (1963) or de Swaan-O
(1976) for naturally fractured reservoirs may be incorpo-
rated in the formulations that follow through a kernel,
~F ðsÞ, in the arguments of the Bessel functions; see Noetinger
and Estebenet (2000), Noetinger et al. (2001, 2016), Albinali
et al. (2016) and Raghavan and Chen (2017) for illustrations
that incorporate subdiffusive mechanisms in the matrix
system and in the fracture system if needed, and for the def-
inition of ~F ðsÞ. Another direct benefit is the option to
include the wellbore storage effect (see Appendix).

Over the past few years, particularly since 2011, a num-
ber of articles pertaining to the behavior of wells in subdif-
fusive systems has appeared in the literature, and different
choices have been made with respect to the development of
the mathematical model. The choices made in this work are
dictated by our experiences in working on shale reservoirs
and the need to address reserves and forecast performance.
A comprehensive discussion of the choices may be found in
Raghavan and Chen (2013a) where we discuss modifica-
tions to Beier’s (1994) model.

2.1 The Darcy law

In our opinion, one of the best expositions of the flux law for
subdiffusive flow is the one given in Henry et al. (2010).
They show that for subdiffusive flows the velocity, vðx; tÞ,
at a location, x, at time, t, is given by

vðx; tÞ ¼ �~k
o

1�a

ot1�a
rpðx; tÞ½ �; ð1Þ

where the symbol, pðx; tÞ is the pressure at a point in time,
and

~k ¼
~k
l
: ð2Þ

The fractional derivative, oaf ðtÞ=ota, for 0 < a < 1 used
in the Caputo (1967) sense is given by

oa

ota
f ðtÞ ¼ 1

C 1� að Þ

Z t

0
dt0ðt � t0Þ�a o

ot0
f ðt0Þ; ð3Þ

where Cð�Þ is the Gamma function. For a ¼ 1, equation (1)
reverts to the classical Darcy equation. For reservoir rocks,
to our knowledge, only the recent study by Raghavan and
Chen (2018) has directly addressed estimates of a; for
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shales in the Permian basin they report the following esti-
mates: 0:56 � af � 0:91 and 0:77 � am � 0:94, where the
subscripts ‘‘f’’ and ‘‘m’’ stand for the fissure and matrix
systems, respectively. Estimates of a may also be deduced
from other works using the guidelines in Beier (1990) and
Metzler et al. (1994). Values in the range 0:6 < a < 0:86
are reported in Acuna et al. (1995), while Flamenco-Lopez
and Camacho-Velázquez (2001) report that a was in the
range 0:47 < a < 0:67. Also from Le Borgne et al. (2004,
2007), we obtain a to be 0:71.

The Laplace transformation of the Caputo fractional
operator, c

0Da
t cf ðtÞ, is given byZ 1

0
e�st c

0Da
t cf ðtÞdt ¼ saf ðsÞ � sa�1f ð0Þ; 0 � a < 1: ð4Þ

This expression in equation (1) implies that the flux at
time, t, may not be obtained directly from the instanta-
neous pressure distribution, pðx; tÞ.

2.2 Formulation

Considering cylindrical coordinates and assuming the well
axis passes through the origin, the application of the conser-
vation of mass principle to a control volume for a slightly
compressible fluid yields

1
r

o

or
vðr; tÞ ¼ /c

o

ot
pðr; tÞ; ð5Þ

where / is the porosity of the medium, and r is the dis-
tance from the well center. On substituting the right-hand
side of equation (1) for vðr; tÞ and integrating, we obtain
the partial differential equation for transient diffusion
under subdiffusive flow to be

o2p
or2
þ 1

r
op
or
¼ 1

~g
oap
ota

; ð6Þ

where ~g, the ‘‘diffusivity’’ of the medium, is given as

~g ¼
~k

/ctl
: ð7Þ

We seek a solution to equation (6) subject to the follow-
ing initial and boundary conditions:

p r; tð Þ ¼ pi; t! 0; ð8Þ

lim
r!1

pðr; tÞ ¼ pi; t > 0; ð9Þ

and

r
o

1�a

ot1�a

op
or

� �� �
rw

¼ ql

2p~kh
; t > 0: ð10Þ

Equation (10) specifies the condition for a well of finite
radius, rw. The Theis solution, however, requires that we
determine the solution when the well radius is vanishingly
small; that is, a line source or the solution as lim rw ! 0.
As the finite well-radius solution is more general, we con-
sider this general solution first and then extract the solution
corresponding to a well that is a line-source.

3 General solution

The procedure for obtaining the solution we desire is
straightforward and may be found in many texts. Working
in terms of the pressure difference, �p ðr; tÞ [pi � p ðr; tÞ�,
with respect to the initial pressure, pi, and denoting �p
to be the Laplace transform of �p, the Laplace transform of
equation (6) becomes a modified Bessel equation of order 0,
the general solution of which is

�p r; sð Þ ¼ AK0
ffiffiffi
u
p

r
� �

þ BI0
ffiffiffi
u
p

r
� �

; ð11Þ

with I 0ðxÞ and K 0ðxÞ representing the modified Bessel
functions of the first and second kind of order 0, respec-
tively, and

u ¼ sa

~g
: ð12Þ

If the outer-boundary condition given by equation (9) is
to be satisfied, then B ¼ 0, because I0ðxÞ ! 1 as x!1.
Application of the Laplace transform to equation (10)
and further simplification provides the constant A; thus,
the pressure distribution is

�p r; sð Þ ¼ qBl

2p~khs2�a
ffiffiffi
u
p

rw

K0
ffiffiffi
u
p

rð Þ
K1

ffiffiffi
u
p

rwð Þ : ð13Þ

3.1 Solutions for the situation xK1(x) as x ! 0

This approximation leads to the consideration of solutions
for two important situations. First, if we consider long
enough times, then the approximation provides the long-
time response for a well of radius, rw; second, if we were
to consider situations where rw ! 0, then the approxima-
tion provides the solution for a line-source well, and the
analog of the Theis (1935) solution for subdiffusive flow is
obtained. These observations also suggest that at long
enough times the line-source solution becomes asymptotic
to the finite-well-radius solution similar to the classical case;
see Mueller and Witherspoon (1965). Because xK1ðxÞ ! 1
as x! 0, the expression for the pressure distribution
around a line-source well under subdiffusion turns out to be

�p r; sð Þ ¼ qBl

2p~khs2�a
K0

ffiffiffi
u
p

r
� �

: ð14Þ

Saxena et al. (2006) show that

2L�1½s�.Kmðzs1Þ� ¼ t.�1H 2;0
1;2

z2t�21

4
j.;21

m
2;1ð Þ; �m

2;1ð Þ

� �
; ð15Þ

where the symbol Hm;n
p;q ½xj

ða1;A1Þ;:::;ðap;ApÞ
ðb1;B1Þ;:::;ðbq ;BqÞ � is the Fox function

or the H -function, Rð.Þ > 0, Rðz2Þ > 0, RðsÞ > 0. To our
knowledge, the Fox function is best computed with the
aid of packages such as Mathematica; see Weisstein
(2018); see also Mainardi et al. (2005). The simplest alter-
native to compute �p r; tð Þ is by inverting the expression
in equation (13) by the Stehfest algorithm (1970a, b).

On defining dimensionless variables corresponding to dis-
tance, rD, time, tD, and pressure, pDðrD; tDÞ, respectively, by
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rD ¼
r

rw
; ð16Þ

tD ¼
~g
r2
w

ta; ð17Þ
and

pDðrD; tDÞ ¼
2p~kh
qBl

~g
r2
w

� �1�a
a

�pðr; tÞ; ð18Þ

we obtain

pDðrD; tDÞ ¼
1
2

t
1�a
a

D H 2;0
1;2

r2
D

4tD
j2�a;a
ð0;1Þ;ð0;1Þ

� �
: ð19Þ

As noted earlier, an expression identical to that in equa-
tion (19) derived by the method of sources and sinks is
given in Raghavan (2012) but the details we are about to
discuss were not considered, as the goal there was to discuss
the performance of fractured wells. First and foremost we
should note that for a ¼ 1, equation (19) does reduce to
the Theis (1935) solution

pD rD; tDð Þ ¼ � 1
2

Ei �uð Þ; ð20Þ

where �Ei �uð Þ is the Exponential Integral and
u ¼ r2

D=ð4tDÞ. Second, it is important to recognize that
the time term in the coefficient of the Fox function arises
out of the fractional Darcy law, equation (10), much in
the same way as the exponent a on the right hand side
of equation (6) arises in our development. There are many
studies where the fractional form of Darcy’s law is not
used (Atangana and Bildik, 2013), and solutions are pre-
sented using equation (6) with the classical definition of
Darcy’s Law; we are yet to understand the physics behind
such approaches to study fluid movement in heteroge-
neous environments for it is not obvious as to how one
may arrive at the differential equation of the form used
here without the use a fractional form of Darcy’s law
(or some other similar consideration). Third and most
importantly, the expression on the right hand side of
equation (19) suggests that a working solution for analyz-
ing responses under subdiffusive flow may be obtained by
plotting pD rD; tDð Þ=rm

D vs tD=r2
D with m ¼ 2ð1� aÞ=ðaÞ; this

aspect is considered in Section 3.2 on Computational
Results. This observation may be advantageous if mea-
surements at several wells are addressed simultaneously
during an interference test.

3.1.1 An asymptotic solution of equation (13)

Considering s! 0, and using the result that for small
values of x, K0ðxÞ is given by (Carslaw and Jaeger, 1959)

K0ðzÞ ¼ � ln
z
2
þ c

	 

þ z2

4
1� cþ ln

z
2

	 
h i

þOðz4 ln zÞ; ð21Þ

where c is Euler’s constant, then after ignoring all but the
first two terms on the right-hand side of equation (21), we

may readily show from that the long-term approxima-
tion of equation (14) (or the long-time approximation of
equation (13)) is

pDðrD; tDÞ ¼
1
2

1
Cð2� aÞ t

1�a
a

D ln
4tD

e2cr2
D
� awð2� aÞ

� �
; ð22Þ

where wð�Þ is the Digamma function. The logarithmic
derivative of pDðrD; tDÞ corresponding to equation (22)
is, of course, given by

p
0
D rD; tDð Þ ¼ 1

2
1

C 2� að Þ t
1�a
a

D

1� að Þ ln
4tD

e2cr2
D

� aw 2� að Þ
� �

þ a

� �
: ð23Þ

Again for a = 1, this result corresponds to the semi-
logarithmic approximation of the Theis (1935) solution,
namely the Cooper and Jacob (1946) approximation.
As we discuss below in a number of situations, like that
discussed in Thomas et al. (2005), active well responses
follow near power-law trends similar to those suggested
by equation (23).

3.1.2 The instantaneous, line-source solution
corresponding to equation (14)

Using the ideas in Carslaw and Jaeger (1959) it is rather
easy to obtain the expression for the pressure distribution,
�fðx; yÞ, at a point, ðx; yÞ, caused by an instantaneous,
line-source at t ¼ 0 located at the point ðxi; yiÞ. The
expression is

fðx; yÞ ¼ sa�1

2p~g
K0 s

a
2
ðx� x

0
iÞ

2 þ ðy � y
0
iÞ

2

~g

( )1
2

2
4

3
5: ð24Þ

The three dimensional version of equation (24) may be
found in Mendes et al. (2005). The line-source or point-
source solution is particularly convenient for determining
the nonlinear scaling of the space-time behavior of the tran-
sient front with the second moment, hr2i, of the transient
scaling in the form

hr2i � ta: ð25Þ

For purposes of understanding well behavior, point- or
line-source solutions are particularly convenient for devel-
oping pressure distributions in reservoirs produced through
complex wellbores; see, for example, Raghavan and Ozkan
(1994).

3.1.3 Vertically-fractured wells

The solution for a vertically fractured well may be obtained
by suitably integrating the right-hand side of equation (24).
Assuming the center of the fracture is at ðxw; ywÞ and that
the fracture extends from ðxw � LfÞ to ðxw þ LfÞ with its
plane parallel to y ¼ 0, the pressure distribution in terms
of the Laplace transformation is
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�pðxD; yDÞ ¼
ll

2pka
sa�1

Z þLf=l

�Lf=l

dk ~q x̂Dð ÞK0
ffiffiffi
u
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x̂wÞ2D þ y � ywð Þ2D
q� �

;

ð26Þ

with l being the reference length, ~qðx; tÞ being the flux dis-
tribution, and x̂wD defined by

x̂wD ¼ xwD þ k: ð27Þ

In the following we consider the uniform-flux solutions;
that is, ~q is independent of x and t. If this were the case,
then equation (26) becomes

pDðxD; yDÞ ¼
l

2Lf

~g

L2
f

� �1�a
a 1

s2�a

Z þLf=l

�Lf=l

dk K0
ffiffiffi
u
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x̂wÞ2D þ y � ywð Þ2D
q� �

: ð28Þ

Although we address only the uniform-flux case,
equation (26) forms the basis for addressing finite-
conductivity solutions; see Cinco-Ley and Meng (1988).

We may evaluate the integral in equation (28) for
ðy 6¼ ywÞ along the lines indicated in Raghavan and Ozkan
(1994). Denoting the integral in equation (28) by I , and the
upper and lower limits of I by b and a, respectively, we may
write

I ¼ 1ffiffi
u
p
R ffiffiup ðxD�aÞ

0 K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ uy2

D

q� �
dn

�

�
Z ffiffi

u
p
ðxD�bÞ

0
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ uy2

D

q� �
dn

#
; ð29Þ

for xD � b, and

I ¼ 1ffiffi
u
p
R ffiffiup ðxD�aÞ

0 K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ uy2

D

q� �
dn

�

þ
R ffiffiup ðb�xDÞ

0 K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ uy2

D

q� �
dn

�
;

ð30Þ

for a � xD � b. The situation for xD � a may be obtained
by symmetry through equation (29). The conclusions we
present in the following apply qualitatively to situations
when the well is produced through a finite-conductivity
fracture (Meehan et al., 1989; Mousli et al., 1982).

3.2 Computational results

The principal goal here is to demonstrate the characteristics
of the responses under subdiffusive conditions in addition to
demonstrating the solutions are computable and accurate.
All results are obtained through the Stehfest algorithm
(1970a, b). Figure 1 presents responses at the observation
well for the situation where rD ¼ 1000. Both the pressure
response and its logarithmic derivative are shown as
unbroken and dashed lines respectively for three values of

the subdiffusive coefficient, a. In general, the characteristics
of the curves are similar to the classical solutions, but the
shapes of the derivative curves, in particular, are signifi-
cantly different at later times because of the existence of
the t1�a=a

D term in equation (22). If this term had not existed,
all derivative curves would be much like the classical case.
This result is a direct consequence of our use of the frac-
tional form of the Darcy law, equation (1), which accounts
for the topological and geometrical influences of the porous
rock on hydraulic movement. As we shall see below, this
characteristic of the solutions is important. The circles
and squares represent the asymptotic expressions given in
equations (22) and (23), respectively; agreement with the
rigorous solutions is excellent. Figure 2 tests the proposition
suggested on the basis of equation (19) that responses under
subdiffusive flow may be correlated in terms of
pD rD; tDð Þ=rm

D vs tD=r2
D where m ¼ 2ð1� aÞ=a. Results are

shown for three values of rD in the range 1 � rD � 103 for
an a of 0:8; similar results are obtained for other values of
the exponent a. This method of viewing results essentially
removes the reference length, rw, and considers responses
in terms of the intrinsic properties of the rock. As we shall
see, this approach is also advantageous in considering
fractured wells. The principal advantage is that it simpli-
fies analysis allowing a working solution which depends
solely on the exponent a as a parameter of interest to be
prepared. Such a working solution is shown in Figure 3
for analyzing responses influenced by subdiffusion in
terms of the exponent a. Derivative responses were corre-
lated in a similar manner and are not shown principally
for clarity.

We now turn our attention to the consideration of the
influence of a finite wellbore; see Figure 4 where we consider
the influence of rD for a ¼ 0:9. The rD ¼ 1 is the well
response for the finite-well-radius case. At long enough
times, the pressure response follows the trend suggested in
equation (22). Furthermore, at distances rD > 20 the
results in Figure 4 suggest that the influence of the well
radius will be negligibly small, a conclusion similar to that

Fig. 1. Pressure (unbroken lines) and derivative responses
(dashed lines) for subdiffusive flow for a ¼ 0:8. The distance from
the well rD is the parameter of interest. The circles and squares
correspond to the asymptotic solutions given in equations (22)
and (23), respectively.
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suggested by Mueller and Witherspoon (1965) for the
classical case, a ¼ 1. Figure 5 considers pressure distribu-
tions around a well produced through a vertical frac-
ture, equation (26). Results are based on assuming the
characteristic length to be the fracture half-length, Lf ; rD

now given by

r2
D ¼ ðxD � xwDÞ2 þ ðyD � ywDÞ

2 ð31Þ

is assumed to be 1:2. The symbol h, the parameter of
interest, is the orientation of the line on the horizontal
plane (y ¼ 0) joining the center of the fracture ðxw; ywÞ
to the point r ðx � xw; y � ywÞ with respect to the fracture
plane; that is,

tan h ¼ y � yw

x� xw
: ð32Þ

The results shown here are typical of all values of rD

except for the fact that the influence of h diminishes as rD

increases and is essentially negligible if rD were greater
than 2. This observation, of course, is independent of

the subdiffusion coefficient, a. Interestingly, the h ¼ 90	

solution corresponds to the line-source solution, equation
(19), if responses are plotted in terms of pD rD; tDð Þ=rm

D vs
tD=r2

D. This is one of the reasons why the line-source solu-
tion has been often successfully used to evaluate fractured
wells. Considering the alignment of the curves, if determin-
ing the orientation, h, is the goal, then choosing a location
where h � 45	 should be preferable. At long enough times,
behavior similar to that given in equation (23) will be evi-
dent for all orientations, h, and distances, rD. This point
may be illustrated by substituting the right-hand side of
equation (21) in equation (28) for K0ðzÞ and integrating
with respect to x; see Raghavan and Ozkan (1994). All of
these observations in a qualitative sense also apply to

Fig. 2. Correlation of well responses indicated in equation (19).
Both pressure and derivative responses are considered for values
of the distance, rD, in the range 1 � rD � 103.

Fig. 3. The working Theis solution for subdiffusive flows.

Fig. 4. Finite-well-radius solutions obtained by inverting equa-
tion (13). The dashed line is the line-source solution, equation
(19). At large enough distances (or long enough times) finite-well
and line-source responses become indistinguishable.

Fig. 5. Pressure distribution under subdiffusive flow at rD ¼ 1:2
for a well produced through a vertical fracture; the flux
distribution along the fracture length is uniform. The subdiffu-
sive coefficient, a, is 0:8. The compass orientation, h, in a
horizontal plane is the parameter of interest with h ¼ 0	 being
aligned with the fracture plane.
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situations where the fracture conductivity is finite (Meehan
et al., 1989; Mousli et al., 1982).

4 Commentary

Historically, subdiffusive flows in porous rocks have been
modeled by considering transient diffusion on a fractal
object where the second moment of the distance travelled
by the front, hr2i, in terms of the anomalous diffusion coef-
ficient or random walk dimension, dwð> 2Þ, is given by

hr2i � t2=dw : ð33Þ

If dw were equal to 2, then classical diffusion results.
Equation (33) is based on the presumption of symmetry
and that the diffusivity term, g, in the transient diffusivity
equation be of the form (Gefen et al., 1983)

g � r�h; ð34Þ

where h > 0 is given by

h ¼ dw � 2: ð35Þ

The stipulation of Gefen et al. (1983) translates to the
requirement that both porosity and permeability be depen-
dent on distance, r, namely; see Chang and Yortsos (1990):

/ðrÞ / rd f�d ; kðrÞ / rd f�d�dwþ2: ð36Þ

The symbols d f , and d in equation (36) represent the
fractal (Hausdorff) and Euclidean (d = 1, 2, or 3) dimen-
sions respectively. For 2D problems in subsurface rocks,
Beier (1994) recommends that we use d f ¼ 2.

In terms of applications to subsurface flow, the require-
ments of both symmetry and power-law structure specifi-
cized in equation (36) impose restrictions if one were to
consider issues such as well spacing, fracture spacing (when
wells are stimulated by multiple hydraulic fractures), esti-
mation of reserves, location of boundaries, anisotropy, and
similar considerations. Beier (1994) recognizes the limita-
tion symmetry imposes on the study of 2D problems as
his primary interest was in the application of equation
(36) to fractured wells. Nevertheless he proceeds by using
equation (36) with the observation that although his solu-
tion does ‘‘... not strictly carry over to the vertical-fracture
geometry’’ and is thus not valid for all times, his solution is
exact during the linear and the pseudoradial flow periods.
The analog of Beier’s solution in terms of the Laplace trans-
formation is discussed in Raghavan and Chen (2013a).
In addition, to address the matter of symmetry they pro-
pose adopting Ball et al. (1987) and using the expression

hx2
i i � t2=dwi ; ð37Þ

instead of equation (33). Here dwi is the random walk
dimension in the direction, i. The analog of the line-source
solution corresponding to equation (14) and reflecting
equation (37) will now involve

�p x1; x2ð Þ � f ðxi; dwi; sÞKm gðxi; dwi; sÞ½ �; ð38Þ

with m < 1. Although the structure of the solution may
appear different with the appearance of the K mðxÞ term,
the well response is of the form,

�p x1; x2; tð Þ � f ðxi; dwi; tÞH 2;0
1;2 gðxi; dwi; tÞ½ �; ð39Þ

with the power-law behavior being preserved. This expres-
sion, however, still does not address the power-law
dependence of permeability and porosity on distance.
Our approach addresses this aspect and still preserves
the subdiffusive characteristics we desire for a number of
problems of interest; see Raghavan and Chen (2013a, b,
2017, 2018), Albinali et al. (2016); it is similar to that used
in Benson et al. (2004) in another context.

5 Discussion and concluding remarks

The primary contribution of this work is to provide a
‘‘working’’ solution to evaluate well responses under subdif-
fusive flow as it is difficult, if not virtually impossible, to
address the appearance of the loss of connectivity that is
often evident even in environments other than naturally
fractured reservoirs; see, for example, derivative responses
in Figure 6 taken from Thomas et al. (2005) at a number
of wells producing from a variety of geological environments
which display near power-law behavior suggesting the
existence of spatial scaling of properties. For the responses
shown, based on the model discussed here, the slopes of
these lines suggest that 0:6 � a � 0:8. The responses are
for wells producing distinct fluvial deposits in a number of
geographical locations in an exploration context. Conse-
quently, it becomes untenable to tap into fractured-well
models if we are circumscribed by the requirement that
the classical option be used. We may consider the option
that the wells produce commingled deposits where the
lateral extent of some of the zones is limited in that these
zones deplete during the producing phase and are fed by
the more extensive zones during the buildup period (differ-
ential depletion, backflow); see Gao et al. (1994). Again, it
seems that this option would not be viable in each of these
tests when the geological setting does not suggest that this
is the case.

Fig. 6. Power-law trends: derivative responses at active wells in
fluvial environments.
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Models of the kind discussed here enable us to eschew
the option of ‘‘simple physics and simple geology’’ when
indeed the responses suggest that the geology is complex.
The concept of subdiffusion offers a viable option to evalu-
ate well tests which display near power-law behaviors; as
already mentioned, classical methods to address tests of
the kind shown in Figure 6 require the conjuring up of
counterfactual geological options or ignoring heterogeneity
altogether. Models incorporating subdiffusive effects have
been shown to be a promising alternative in explaining
the performance of shale reservoirs; see Chu et al. (2017,
2018).

Acknowledgments. We thank the referees for their comments.
The insights of the editor, Dr. B. Noetinger, significantly
improved the contents.

References

Acuna J.A., Ershaghi I., Yortsos Y.C. (1995) Practical applica-
tion of fractal pressure-transient analysis in naturally frac-
tured reservoirs, SPE Form. Eval. 10, 3, 173–179. DOI:
10.2118/24705-PA.

Agarwal R.G., Al-Hussainy R., Ramey H.J. Jr. (1970)
An investigation of wellbore storage and skin effect in
unsteady liquid flow: I. Analytical treatment, Soc. Pet. Eng.
Jour. 10, 3, 279–290.

Albinali A., Holy R., Sarak H., Ozkan E. (2016) Modeling of 1D
anomalous diffusion in fractured nanoporous media, Oil Gas
Sci. Technol. - Rev. IFP Energies nouvelles 71, 56.

Arps J.J. (1945) Analysis of decline curves, Trans. AIME 160,
228–247. DOI: 10.2118/945228-G.

Atangana A., Bildik B. (2013) The use of fractional order
derivative to predict the groundwater flow, Math. Probl. Eng.
543026, 9. DOI: 10.1155/2013/543026.

Ball R.C., Havlin S., Weiss G.H. (1987) Non-Gaussian random
walks, J. Phys. A: Math. Gen. 20, 12, 4055–4059. DOI:
10.1088/0305-4470/20/12/052.

Beier R.A. (1990) Pressure transient field data showing fractal
reservoir structure, Paper 90-04 presented at the Annual
Technical Meeting, Calgary, Alberta, Petroleum Society of
Canada. DOI: 10.2118/90-04.

Beier R.A. (1994) Pressure-transient model for a vertically
fractured well in a fractal reservoir, SPE Form. Eval. 9, 2,
122–128. DOI: 10.2118/20582-PA.

Benson D.A., Tadjeran C., Meerschaert M.M., Farnham I.,
Pohll G. (2004) Radial fractional-order dispersion through
fractured rock, Water Resour. Res. 40, W12416. DOI: 10.1029/
2004WR003314.

Bodvarsson G.S., Boyle W., Patterson R., Williams D. (1999)
Overview of scientific investigations at Yucca Mountain: The
potential repository for high-level nuclear waste, J. Contam.
Hydrol. 38, 1–3, 3–24.

Camacho-Velázquez R., Fuentes-Cruz G., Vásquez-Cruz M.
(2008) Decline-curve analysis of fractured reservoirs with
fractal geometry, SPE Reserv. Evalu. Eng. 11, 3, 606–619.

Caputo M. (1967) Linear Models of dissipation whose Q is
almost frequency independent-II, Geophys. J. R. Astron. Soc.
13, 5, 529–539.

Carslaw H.S., Jaeger J.C. (1959) Conduction of heat in solids,
2nd edn., Clarendon Press, Oxford, p. 510.

Chang J., Yortsos Y.C. (1990) Pressure-transient analysis of
fractal reservoirs, SPE Form. Eval. 5, 1, 31–39.

Chu W.C., Garcia-Rivera J., Raghavan R. (1980) Analysis
of interference test data influenced by wellbore storage and skin
at the flowing well, J. Pet. Tech. 32, 1, 171–178. DOI: 10.2118/
8029-PA.

Chu W., Pandya N., Flumerfelt R.W., Chen C. (2017) Rate-
Transient analysis based on power-law behavior for Permian
wells, Paper SPE-187180-MS, presented at the SPE Annual
Technical Conference and Exhibition, 9–11 October, San
Antonio, Texas, USA, Society of Petroleum Engineers. DOI:
10.2118/187180-MS.

Chu W., Scott K., Flumerfelt R.W., Chen C. (2018) A new
technique for quantifying pressure interference in fractured
horizontal shale wells, Paper SPE-191407-MS, presented at
the Annual Technical Conference and Exhibition, 24–28
September, Dallas, TX, USA.

Cinco-Ley H., Meng H.-Z. (1988) Pressure transient analysis of
wells with finite conductivity vertical fractures in double
porosity reservoirs, Presented at the SPE Annual Technical
Conference and Exhibition, 2–5 October, Houston, Texas.
DOI: 10.2118/18172-MS.

Cooper H.H., Jacob C.E. (1946) A generalized graphical method
for evaluating formation constants and summarizing well-field
history, Trans. AGU. 27, 526–534.

Dassas Y., Duby Y. (1995) Diffusion toward fractal interfaces,
potentiostatic, galvanostatic, and linear sweep voltammetric
techniques, J. Electrochem. Soc. 142, 12, 4175–4180.

de Swaan-O A. (1976) Analytical solutions for determining
naturally fractured reservoir properties by well testing, Soc.
Pet. Eng. Jour. 16, 3, 117–122. DOI: 10.2118/5346-PA.

Fetkovich M.J. (1980) Decline curve analysis using type curves,
J. Pet. Tech. 32, 6, 1065–1077.

Flamenco-Lopez F., Camacho-Velázquez R. (2001) Fractal
transient pressure behavior of naturally fractured reservoirs,
Paper 71591 presented at the Annual Technical Conference
and Exhibition, New Orleans, LA, Society of Petroleum
Engineers. DOI: 10.2118/71591-MS.

Gao C., Jones J.R., Raghavan R., Lee W.J. (1994) Responses of
commingled systems with mixed inner and outer boundary
conditions using derivatives, SPE Form. Eval. 9, 4, 264–271.

Gefen Y., Aharony A., Alexander S. (1983) Anomalous diffusion
on percolating clusters, Phys. Rev. Lett. 50, 1, 77–80. DOI:
10.1103/PhysRevLett.50.77.

Hawkins M.F. Jr. (1956) A note on the skin effect, Trans. AIME
207, 356–357.

Henry B.I., Langlands T.A.M., Straka P. (2010) An introduction
to fractional diffusion, in: Dewar R.L., Detering F. (eds),
Complex physical, biophysical and econophysical systems,
World Scientific, Hackensack, NJ, p. 400.

IPCC special report on carbon dioxide capture and storage (2005)
Prepared by working group III of the Intergovernmental Panel
on Climate Change, in: Metz B., Davidson O., de Coninck
H.C., Loos M., Meyer L.A. (eds), Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 442 p.

Kim S., Kavvas M.L., Ercan A. (2015) Fractional ensemble average
governing equations of transport by time-space nonstationary
stochastic fractional advective velocity and fractional dispersion,
II: numerical investigation, J. Hydrol. Eng. 20, 2, 04014040.

Le Borgne T., Bour O., de Dreuzy J.R., Davy P., Touchard F.
(2004) Equivalent mean flow models for fractured aquifers:
Insights from a pumping tests scaling interpretation, Water
Resour. Res. 40, W03512. DOI: 10.1029/2003WR002436.

R. Raghavan and C. Chen: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 6 (2019)8

https://doi.org/10.2118/24705-PA
https://doi.org/10.2118/945228
https://doi.org/10.1155/2013
https://doi.org/10.1088/0305-4470
https://doi.org/10.2118/90-04
https://doi.org/10.2118/20582
https://doi.org/10.1029/2004WR003314
https://doi.org/10.1029/2004WR003314
https://doi.org/10.2118/8029
https://doi.org/10.2118/8029
https://doi.org/10.2118/187180
https://doi.org/10.2118/18172
https://doi.org/10.2118/5346
https://doi.org/10.2118/71591
https://doi.org/10.1103/PhysRevLett.50.77
https://doi.org/10.1029/2003WR002436


Le Borgne T., Bour O., de Dreuzy J.R., Davy P. (2007)
Characterizing flow in natural fracture networks: Comparison
of the discrete and continuous descriptions, 437–450, in:
Krazny J., Sharp J.M., Groundwater in Fractured Rocks:
Selected papers from the Groundwater in Fractured Rocks on
Hydrogeology, Prague 2003, Taylor & Francis/Balkema, The
Netherlands, 647 pp.

Le M~ehaut~e A. (1984) Transfer processes in fractal media, J.
Stat. Phys. 36, 5–6, 665–676. DOI: 10.1007/BF01012930.

Mainardi M., Pagnini G., Saxena R.K. (2005) Fox H func-
tions in fractional diffusion, J. Comput. Appl. Math. 178, 1–2,
321–331.

Meehan D.N., Horne R.N., Ramey H.J. (1989) Interference
testing of finite conductivity hydraulically fractured wells,
Presented at the SPE Annual Technical Conference and
Exhibition, 8–11 October, San Antonio, Texas, SPE-19784-
MS. DOI: 10.2118/19784-MS.

Mendes G.A., Lenzi E.K., Mendes R.S., da Silva L.R. (2005)
Anisotropic fractional diffusion equation, Physica A: Stat.
Mech. Appli. 346, 3–4, 271–283.

Metzler R., Glockle W.G., Nonnenmacher T.F. (1994) Frac-
tional model equation for anomalous diffusion, Physica A 211,
1, 13–24.

Mousli N.A., Raghavan R., Cinco-Ley H., Samaniego-V F.
(1982) The influence of vertical fractures intercepting active
and observation wells on interference tests, Soc. Pet. Eng.
Jour. 22, 6, 933–944. DOI: 10.2118/9346-PA.

Mueller T.D., Witherspoon P.A. (1965) Pressure interference
effects within reservoirs and aquifers, J. Pet. Tech. 17, 4,
471–474. DOI: 10.2118/1020-PA.

Nigmatullin R.R. (1984) To the theoretical explanation of the
universal response, Phys. Status Solidi B Basic Res. 123, 2,
739–745.

Nigmatullin R.R. (1986) The realization of the generalized
transfer equation in a medium with fractal geometry, Phys.
Status Solidi B Basic Res. 133, 1, 425–430.

Noetinger B., Estebenet T. (2000) Up-scaling of double porosity
fractured media using continuous-time random walks meth-
ods, Transp. Porous Med. 39, 3, 315–337.

Noetinger B., Estebenet T., Landereau P. (2001) A direct
determination of the transient exchange term of fractured
media using a continuous time random walk method, Transp.
Porous Med. 44, 3, 539–557.

Noetinger B., Roubinet D., Russian A., Le Borgne T., Delay F.,
Dentz M., Gouze P. (2016) Random walk methods for
modeling hydrodynamic transport in porous and fractured
media from pore to reservoir scale, Transp. Porous Med. 115,
2, 345–385.

Raghavan R. (2004) A review of applications to constrain
pumping test responses to improve on geological description
and uncertainty, Rev. Geophys. 42, RG4001. DOI: 10.1029/
2003RG000142.

Raghavan R. (2009a) A note on the drawdown, diffusive
behavior of fractured rocks, Water Resour. Res. 45, 2,
W02502. DOI: 10.1029/2008WR007158.

Raghavan R. (2009b) Complex geology and pressure tests, J.
Petrol. Sci. Eng. 69, 181–188.

Raghavan R. (2011) Fractional derivatives: Application to
transient flow, J. Petrol. Sci. Eng. 80, 1, 7–13. DOI:
10.1016/j.petrol.2011.10.003.

Raghavan R. (2012) Fractional diffusion: Performance of frac-
tured wells, J. Petrol. Sci. Eng. 92–93, 167–173.

Raghavan R., Chen C. (2013a) Fractured-well performance
under anomalous diffusion, SPE Res. Eval. Eng. 16, 3,
237–245, DOI: 10.2118/165584-PA.

Raghavan R., Chen C. (2013b) Fractional diffusion in rocks
produced by horizontal wells with multiple, transverse
hydraulic fractures of finite conductivity, J. Petrol. Sci. Eng.
109, 133–143.

Raghavan R., Chen C. (2017) Addressing the influence of a
heterogeneous matrix on well performance in fractured rocks,
Transp. Porous Med. 117, 1, 69–102. DOI: 10.1007/s11242-
017-0820-5.

Raghavan R., Chen C. (2018) A conceptual structure to evaluate
wells producing fractured rocks of the Permian Basin, Paper
SPE-191484-MS, Presented at the Annual Technical Confer-
ence and Exhibition, 24–28 September, Dallas, TX, USA.

Raghavan R., Ozkan E. (1994) A method for computing
unsteady flows in porous media, Pitman Research Notes in
Mathematics Series (318), Longman Scientific & Technical,
Harlow, UK, 188 p.

Romeu R.K., Noetinger B. (1995) Calculation of internodal
transmissibilities in finite-difference models of flow in hetero-
geneous media, Water Resour. Res. 26, 2, 291–306.

Sanchez-Vila X., Guadagnini A., Carrera J. (2006) Representa-
tive hydraulic conductivities in saturated groundwater flow,
Rev. Geophys. 44, RG3002. DOI: 10.1029/2005RG000169.

Saxena R.K., Mathai A.M., Haubold H.J. (2006) Fractional
reaction-diffusion equations, Astrophys. Space Sci. 305, 3,
289–296.

Schad H., Teutsch G. (1994) Effects of the investigation scale on
pumping test results in heterogeneous porous aquifers,
J. Hydrology 159, 61–77.

Stehfest H. (1970a) Algorithm 368: Numerical inversion of
Laplace transforms [D5], Commun. ACM 13, 1, 47–49.

Stehfest H. (1970b) Remark on algorithm 368: Numerical
inversion of Laplace transforms, Commun. ACM 13, 10, 624.

Su N., Nelson P.N., Connor S. (2015) The distributed-order
fractional diffusion-wave equation of groundwater flow:
Theory and application to pumping and slug tests, J.
Hydrology 529, 1262–1273.

Theis C.V. (1935) The relationship between the lowering of
the piezometric surface and the rate and duration of dis-
charge of a well using ground-water storage, EOS Trans. AGU
2, 519–524.

Thomas O.O., Raghavan R., Dixon T.N. (2005) Effect of scaleup
and aggregation on the use of well tests to identify geological
properties, SPE Res. Eval. Eng. 8, 3, 248–254. DOI: 10.2118/
77452-PA.

Uraiet A., Raghavan R., Thomas G.W. (1977) Determination of
the orientation of a vertical fracture by interference tests,
J. Pet. Tech. 29, 1, 73–80. DOI: 10.2118/5845-PA.

Warren J.E., Price H.S. (1961) Flow in heterogeneous media,
Soc. Pet. Eng. Jour. 1, 3, 153–169.

Warren J.E., Root P.J. (1963) The behavior of naturally
fractured reservoirs, Soc. Pet. Eng. Jour. 3, 3, 245–255.
DOI: 10.2118/426-PA.

Weisstein, E.W. (2018) Fox H-Function. From MathWorld – A
Wolfram web resource. http://mathworld.wolfram.com/
FoxH-Function.html; see also, http://www.wolframalpha.
com/input/?i=fox+h-function.

Whiting R.L., Ramey H.J. (1969) Application of material and
energy Balances to geothermal steam production, J. Pet.
Tech. 21, 7, 893–900. DOI: 10.2118/1949-PA.

R. Raghavan and C. Chen: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 6 (2019) 9

https://doi.org/10.1007/BF01012930
https://doi.org/10.2118/19784-MS
https://doi.org/10.2118/9346
https://doi.org/10.2118/1020
https://doi.org/10.1029/2003RG000142
https://doi.org/10.1029/2003RG000142
https://doi.org/10.1029/2008WR007158
https://doi.org/10.1016/j.petrol.2011.10.003
https://doi.org/10.2118/165584-PA
https://doi.org/10.1007/s11242-017-0820-5
https://doi.org/10.1007/s11242-017-0820-5
https://doi.org/10.1029/2005RG000169
https://doi.org/10.2118/77452
https://doi.org/10.2118/77452
https://doi.org/10.2118/5845
https://doi.org/10.2118/426-PA
http://mathworld.wolfram.com/FoxH-Function.html
http://mathworld.wolfram.com/FoxH-Function.html
http://www.wolframalpha.com/input/?i=fox+h-function
http://www.wolframalpha.com/input/?i=fox+h-function
https://doi.org/10.2118/1949


Appendix

In this Appendix we derive the relevant expressions to deter-
mine the well response under subdiffusive flow in the pres-
ence of storage and skin effects. The problem is best
addressed by Duhamel’s theorem as some subtleties are
involved in considering the influence of the skin region
under subdiffusive flow.

A.1 Wellbore storage and skin for
subdiffusive flow

We first consider matters related to the skin region. Follow-
ing Hawkins (1956), we find that the effective skin factor, ~S,
is given by the expression

~S ¼
~k
~ks

� 1

 !
ln

rs

rw

� �
t
1�a
a

D

Cð2� aÞ : ð40Þ

For a ¼ 1, equation (40) reduces to Hawkins’s expres-
sion, S, namely,

S ¼ k
ks
� 1

� �
ln

rs

rw

� �
: ð41Þ

In terms of the Laplace transformation, equation (40)
corresponds to

~S ¼ ~g
r2
w

� �1�a
a S

s2�a
: ð42Þ

We now proceed as in Agarwal et al. (1970) by consid-
ering material balance effects around the wellbore and
assuming the skin region to be an infinitesimally thin region
around the wellbore with a negligibly small storage capac-
ity. We work in terms of the Laplace transformation. The
production rate, q, at the surface is the sum of the wellbore
rate, qwb, and sandface rate, qsf ; that is,

q ¼ qsf þ qwb; ð43Þ

with the wellbore rate given by the expression

qwb ¼ Cs�pwf ; ð44Þ

where the symbol C is the storage constant of the well or
the unit storage factor, and �pwf ¼ pi � pwf where pwf is
the wellbore pressure. From equation (43) for a constant
surface rate, q, we obtain

qsfD ¼
1� XCDs2pwD

s
: ð45Þ

where qsfD ¼ qsf=q, and where pwDðtÞ is the dimensionless
wellbore pressure with the dimensionless storage constant,
CD, given by

CD ¼
C

2p/hctr2
w

; ð46Þ

and

X ¼ 1

ð~g=r2
wÞ

1
a
: ð47Þ

For variable-rate production, qðtÞ, Duhamel’s theorem
for the pressure distribution, pðr; tÞ, at any point in time is

2p~kh
l

~g
r2
w

� �1�a
a

pi � p r; tð Þ½ � ¼
Z t

0
q sð Þp0Du rD; t � sð Þds: ð48Þ

In equation (48), p0DuðrD; t � sÞ represents
dpDuðrD; tÞ=dt evaluated at t � s, and pDuðrD; tÞ is the
appropriate constant-rate (unit-well) solution.

For the situation under consideration, equation (48)
yields

pwD ¼ sqsfDpwDu0 ð49Þ

where pwDu is the Laplace transform of the unit-well solu-
tion, pwDu, and is given by

pwDu ¼
1

2s2�a

~g
r2
w

� �1�a
a K0

ffiffiffi
u
pð Þffiffiffi

u
p

K1
ffiffiffi
u
p
ð Þ þ

~g
r2
w

� �1�a
a S

s2�a
; ð50Þ

and on combining equations (45) and (49), we may show
that the well response for the solution that incorporates
wellbore storage and skin effects is given by

�pwD ¼
�pwDu

½1þ XCDs2�pwDu�
; ð51Þ

where pwDu is the CD ¼ 0 solution. Or

�pwD ¼
s2�a�pD þ ~g=r2

w

� �1�a
a S

½s2�a þ s2XCDðs2�a�pD þ ~g=r2
w

� �1�a
a SÞ�

; ð52Þ

where pD is the CD ¼ 0; ~S ¼ 0 solution. To account for the
influences of storage and skin effects that exist at a flow-
ing well on the pressure responses at an observation well,
we may, again, use Duhamel’s theorem; see Chu et al.
(1980).
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