Enhanced Oil Recovery (EOR)

909 > Editorial - Enhanced Oil Recovery (EOR), Asphaltenes and Hydrates
Editorial - EOR «récupération assistée du pétrole», Asphaltènes et Hydrates
D. Langevin and F. Baudin

917 > HP-HT Drilling Mud Based on Environmentally-Friendly Fluorinated Chemicals
Boues de forage HP-HT à base de composés fluorés respectueux de l'environnement
I. Henaut, D. Pasquier, S. Rovinetti and B. Espagne

931 > Effective Viscosity in Porous Media and Applicable Limitations for Polymer Flooding of an Associative Polymer
Viscosité effective dans des médias poreux et limites d’application de l’injection de polymères associatifs
P. Zhang, Y. Wang, Y. Yang, W. Chen and S. Bai

941 > Dynamic Gelation of HPAM/Cr(III) under Shear in an Agitator and Porous Media
Gélification dynamique de HPAM/Cr(III) sous cisaillement dans un agitateur et en milieu poreux
Y. Haiyang, W. Yefei, Z. Jian, L. Peng and S. Shenglong

951 > Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs
Modélisation par ordinateur du comportement de déplacement du dioxyde de carbone dans des réservoirs d’huile non saturés
B. Ju, Y.-S. Wu and J. Qin

967 > Predicting CO₂ Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm
Prédiction de la pression miscibilité minimum (MMP) du CO₂ en utilisant un algorithme basé sur l’ACE (Alternating Conditional Expectation)
O. Alomair, A. Malallah, A. Elsharkawy and M. Iqbal

983 > Towards the Development of Bitumen Carbonates: An Integrated Analysis of Grosnort Steam Pilots
Vers le développement des carbonates bitumineux : une analyse intégrée des pilotes vapeur de Grosnort
C.C. Ezeuko, J. Wang, M.S. Kallos and I.D. Gates

1007 > A Novel Model of Foam Flooding Considering Multi-Factors for Enhancing Oil Recovery
Un nouveau modèle d’injection de mousse considérant de multiples facteurs afin d’améliorer la récupération de pétrole
J. Wang, H. Liu, H. Zhang, G. Zhang, P. Liu and K. Sapehnoori

1025 > Testing of Snorre Field Foam Assisted Water Alternating Gas (FAWAG) Performance in New Foam Screening Model
Vérification des performances de la méthode FAWAG (Foam Assisted Water Alternating Gas) sur le champ de Snorre, en Norvège, avec un nouveau modèle de sélection des mousse
P. Spirov and S. Rudyk

Asphaltenes

1035 > Structural Study of Asphaltenes from Iranian Heavy Crude Oil
Étude structurale d’asphaltènes de pétrole brut lourd iranien
L. Davarpanah, F. Vahabzadeh and A. Dermanaki

1051 > Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples
Étude expérimentale et modélisation mathématique du mécanisme de dépôt d’asphaltènes dans des carottes de forage
T. Jafari Behbahani, C. Ghotbi, V. Taghikhani and A. Shahrabadi

Hydrates

1087 > Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay
Formation et dissociation d’hydrates de méthane en présence de sable de silice et d’argile de bentonite
V. Kumar Saw, G. Udanyabhana, A. Mandal and S. Laik

1101 > Prediction of Mass Flow Rate in Supersonic Natural Gas Processing
Prédiction du débit massique dans les applications de traitement supersonique du gaz naturel
C. Wen, X. Cao, Y. Yang and Y. Feng

1111 > Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop
Étude expérimentale sur le temps d’induction d’hydrate d’une émulsion eau-en-huile saturée en gaz en utilisant une boucle à circulation sous haute pression
X.F. Lv, B.H. Shi, Y. Wang, Y.X. Tang, L.Y. Wang and J. Gong

1125 > Hollow Silica: A Novel Material for Methane Storage
La silice creuse : un nouveau matériau pour le stockage de méthane
V.D. Chari, P.S.R. Prasad and S.R. Murthy
Testing of Snorre Field Foam Assisted Water Alternating Gas (FAWAG) Performance in New Foam Screening Model

Pavel Spirov* and Svetlana Rudyk

Sultan Qaboos University - Department of Petroleum and Chemical Engineering, PO Box 34, Al-Khod 123, Muscat - Sultanate of Oman
e-mail: pavlicica3@gmail.com - svetrud77@mail.ru

* Corresponding author

Abstract — Eclipse Functional Foam Model was used in order to provide a guideline for the history matching process (Gas-Oil Ratio (GOR), oil and gas production rates) to the Foam Assisted Water Alternating Gas method in the Snorre field, Norway, where the surfactant solution was injected in two slugs to control gas mobility and prevent gas breakthrough. The simulation showed that the first short slug was not efficient while significant GOR decrease and incremental oil production was obtained after the second longer slug in some periods. This study shows that the Eclipse foam model is applicable to the planning of water and gas injections, the testing of various surfactant properties, and the evaluation of the efficiency of the method at the field scale.

Résumé — Vérification des performances de la méthode FAWAG (Foam Assisted Water Alternating Gas) sur le champ de Snorre, en Norvège, avec un nouveau modèle de sélection des mousses — Le modèle Éclipse “Functional Foam” a été utilisé pour guider le processus de calage des données de production (rapport gaz-huile, débits d’huile et de gaz) du champ Snorre, en Norvège, dans le cas d’une exploitation par une méthode d’injection alternée d’eau et de gaz avec mousse. La solution d’agents tensioactifs a été injectée en deux bouchons afin de contrôler la mobilité du gaz et d’empêcher la percée de gaz. La simulation a permis d’observer que le premier bouchon n’était pas suffisamment efficace, alors qu’une diminution significative du rapport gaz/huile et qu’une augmentation importante de la production en huile étaient constatées après le second bouchon pour certaines périodes. Cette étude démontre que le modèle Éclipse dédié aux mousses, permet de planifier les injections d’eau et de gaz, de tester les différentes propriétés des tensioactifs et d’évaluer l’efficacité de la méthode à l’échelle d’un champ pétrolier.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SYMBOLS AND NOTATIONS

\(t \) Time \\
\(V \) Block pore volume \\
\(S_w \) Water saturation \\
\(C_f \) Foam concentration \\
\(B_r, B_w \) Rock and water formation volume \\
\(\rho_r \) Rock density \\
\(C_f' \) Foam concentration adsorbed on to the rock \\
\(\phi \) Porosity \\
\(\Sigma \) Sum over neighbouring cells \\
\(T \) Transmissibility \\
\(k_{rw} \) Water relative permeability \\
\(\mu_w \) Water viscosity \\
\(M_{rf} \) Foam mobility reduction factor \\
\(P_w \) Water pressure \\
\(\rho_w \) Water density \\
\(D_z \) Cell centre depth \\
\(Q_w \) Water production rate \\
\(\lambda \) Rate decay parameter function of oil and water saturation \\
\(S_o \) Oil saturation \\
\(M_r \) Reference mobility reduction factor \\
\(F_s \) Mobility reduction function due to surfactant concentration \\
\(F_w \) Mobility reduction function due to water saturation \\
\(F_o \) Mobility reduction function due to oil saturation \\
\(F_c \) Mobility reduction function due to capillary number \\
\(C_s \) Surfactant concentration \\
\(C_s' \) Reference surfactant concentration \\
\(\epsilon_s \) Steepness of the transition \\
\(S_o^{\text{max}} \) Maximum oil saturation above which the foam ceases to be effective \\
\(\epsilon_o \) Exponent which controls the steepness of the transition about the point where \(S_o = S_o^{\text{max}} \) \\
\(S_w^{\text{limit}} \) Limiting water saturation below which the foam cease to be effective \\
\(f_w \) Weighing factor which controls the sharpness in the changes in mobility \\
\(N_c \) Capillary number \\
\(N_c' \) Reference capillary number \\
\(\epsilon_c \) Exponent which controls the steepness of the transition about the point where \(N_c = N_c' \) \\
\(\text{GOR} \) Gas Oil Ratio (simulated) \\
\(\text{GORH} \) Gas Oil Ratio Historical \\
\(\text{OPR} \) Oil Production Rate (simulated) \\
\(\text{OPRH} \) Oil Production Rate Historical

INTRODUCTION

Foam Behaviour

The usual problem of gas injection methods is early gas breakthrough. Foam applications can solve the problems of gas mobility control and store more gas in reservoirs by building a bank behind the oil, delaying early gas breakthroughs and reducing the gas oil ratio (Skauge et al., 2002). Foam is generated when gas, passing through surfactant in an aqueous phase, creates a stable dispersion of gas bubbles and lamellae trains in the liquid. With an objective of reducing the gas-oil ratio in production wells, it is essential to have foam that is immobile after placement. Stationary or trapped foam can block a large number of channels that would otherwise carry gas. When foam bubbles form in a porous medium, the bubble size typically matches the pore size of the rock. These bubbles tend not to move until they are compressed (hence, reducing their size) through the application of a higher pressure, which in turn leads to more bubbles being generated (‘The Foam Model’, 2012). The effect of the size of the bubbles, the longevity of the foam and the impact of the oil and water on the foam’s strength and stability have been described in numerous studies. It has been observed by (Hirasaki and Lawson, 1985) that bubbles of smaller sizes are less mobile than larger bubbles. A low permeable matrix has a detrimental effect on the foam strength because of stretching and squeezing, whereas foam flowing through pores and throats causes thin films to break, foam coalescence occurs and bubble size increases, which leads to an increase in foam mobility (Ashoori et al., 2010).

Typically, the reduction of gas mobility depends on a range of factors, including pressure and shear rate (Prud’homme and Khan, 1996).

The physics of the foam flooding process is very complex. Low foam density causes the fractionation of the flow, while low foam viscosity leads to fingering and channelling. Foam will collapse if the water saturation is below, or the oil saturation is above, certain values. Foam also disappears through natural decay and due to the adsorption by the rock surface, which implies that the foam properties vary with space and time. At higher temperatures and more acidic media the rate of decay increases (Angstadt and Tsao, 1987). In foam flooding,
the foam properties have a decisive impact on the efficiency of the method while the reduction of the interfacial tension (between oil and water) has no significant effect.

To apply foam for Enhanced Oil Recovery (EOR) one must understand both the physical interactions between foam and oil in porous media and how these interactions are represented in computer models (Farajzadeh et al., 2012). Recent studies have shown that foam rheology in porous media can be characterised by foam catastrophe, which exhibits three foam states (weak-foam, strong-foam and intermediate states) and two strong foam regimes (high-quality and low-quality) (Afsharpoor et al., 2010).

In computer models, foam is classified as strong foam (immobile foam) and weak foam (flowing foam). The model simulates the reduction of gas mobility in the presence of the foam, which is accomplished by reducing the relative permeability of the gas, increasing its viscosity, or a combination of both. The foam generation, foam movement and its effect on gas mobility are taken into consideration. The surfactant is distributed in terms of concentration in the cells. The surfactant concentration is divided into adsorbed foam, decayed foam and remaining foam, or an effective concentration that will act to change the mobility. The interaction of the foam with all available media in the reservoir, such as water, oil and rock, is formulated mathematically in order to model the project performance. The shape of the fractional flow curve changes with injection velocity; a weak foam state is obtained at low injection velocity and a strong foam state is achieved at high injection velocity (Dholkawala et al., 2007). The foam can be transported by either water or gas; the two options for a tracer. Gas tracer studies measure the fraction of gas trapped within the foam at steady state (Kovscek, 1998).

Considering the beneficial effects of foam for mobility control for gas, numerous laboratory studies have been conducted (Zuta and Fjelde, 2011) but few field-scale pilot projects are available for the application of the theories and methodologies defined in the literature for foam (Shabib-Asl et al., 2013).

FAWAG at Snorre Field

The Foam Assisted Water Alternating Gas (FAWAG) technique implemented in the Snorre field, Norway, has become the world’s largest application of four pilot projects in different parts of the field. The pilots covered gas shut off in production wells, mobility control and the diversion of injected gas.

Most of the North Sea reservoirs are composed of massive sandstone fluvial deposits within rotated fault blocks. The properties of this reservoir type are high temperature of 90°C and high pressure of more than 383 bars at 2475 m in Statfjord and Lunde formations. Permeability is changing in streaks in the range of 100-3 000 mD (Skauge et al., 2002). The injected gas contained 70% of methane.

Rapid development of gas production after gas breakthrough might cause a severe problem for some North Sea oil fields. In these fields, the gas front will reach all the production wells almost simultaneously. Gas handling might put restrictions on further oil production and thus, any means by which to delay gas breakthrough is desirable. Side tracking of the production wells to lower parts of the formation intervals might be beneficial. Zone-isolation or blocking of the higher perforations appears difficult by traditional well treatments. For those reasons, the use of foam to block a gas cone and delay the GOR development of the wells has received much attention (Aarre et al., 2002).

The project originally started in 1997 in the Central Fault Block (CFB) of the Snorre field. Owing to problems associated with the fracturing and gas leakages, the injection area was changed to the Western fault block of the Snorre field. The experience from the tests in the CFB had identified that surfactant alternating gas was the best injection method. Well P-32 was chosen as an injector to reduce the producing GOR at production well P-39, which is located at a distance of 1550 m.

Gas, water and surfactant were injected periodically into the injector following schedule shown in Figure 1. An initial short cycle of foam injection observed in laboratory experiments (Aarre et al., 2002) was more efficient than later injections. In addition, owing to the establishment of trapped gas saturation in the area after the first gas injection and mass exchange reduction

![Figure 1](image)

Schedule and injection rates: gas injection rate for well P-32G and water injection rate for well P-32W. Surfactant injections are shown in slugs.
between the oil and gas in the second gas injection period, gas breakthrough is expected to arrive earlier. Therefore, the surfactant injection of C14-16 commercial grade alpha olefin sulfonate or AOS-16 3-hydroxy sulfonate was applied in two slugs: an initial short foam cycle of the brine surfactant slug injection was in period from 2/11/1999 to 12/11/1999, which was followed by the gas injection from 12/11/1999 to 26/2/2000. The surfactant concentration used for the simulator was 4.9 kg/Sm3 and the cumulative surfactant injection over nine days was 15 262 Sm3. The second foam cycle was begun by an injection of a brine surfactant slug from 26/2/2000 to 17/3/2000 followed by gas injection from 17/3/2000 to 20/12/2000. The injection for the Water Alternating Gas (WAG) cycle started immediately after the end of the FAWAG cycle, which was on 20/12/2000. The surfactant concentration for second slug was 2 kg/Sm3 and the cumulative injection equal to 31 733 Sm3. During the injection of the surfactant solution and gas, the injection rate was adjusted to ensure that the fracturing pressure was not exceeded.

The objectives of the field trial of the Snorre projects were as follows: to reduce the producing GOR in production well P-39 and to increase the sweep efficiency during gas injection and the storage of gas in the reservoir. The numerical simulation of the performance at the Snorre field using the Eclipse Foam Model is described in this study.

1 ECLIPSE FOAM PROPERTIES MODELING

In ECLIPSE 2009.1, the foam model has been extended to provide water as a transport phase in addition to gas. Accompanying this, a new functional model for the gas mobility reduction factor (M_r) has been implemented. The foam carrier (tracer) for the functional model is bubbles generated in the water and the gas velocity is not considered.

Therefore, the foam distribution between all members of the equation C_f is described by Equation (1) as a function of water properties:

$$\frac{d}{dt} \left(\frac{V_{Sw}C_f}{B_rB_w} \right) + \frac{d}{dt} \left(V \rho_r C_f \frac{1 - \phi}{\phi} \right) = \sum \left[\frac{T_{krw}}{B_r\mu \phi} (\delta P_w - \rho_\phi gD_z) \right] C_f + Q_wC_f - \lambda (S_w, S_o)V C_f$$

The basic equation for the modeling is derived from the combination of Darcy’s Law and the Buckley-Leverett equation. The volume of the generated foam, when surfactant is added into water, depends on the volume of water and is calculated as:

$$\left(\frac{V_{Sw}C_f}{B_rB_w} \right)$$

The part of the surfactant adsorbed by the rock is represented by:

$$V \left(\frac{1 - \phi}{\phi} \right) \rho_r C_f$$

During time increment dt, the foam passing through a volume element of rock is calculated as:

$$\left[\frac{T_{krw}}{B_r\mu_w} (\delta P_w - \rho_\phi gD_z) \right] C_f$$

The foam travelling in the water phase is Q_wC_f.

The foam decay due to oil and water over time is modeled by the foam decay $\lambda (S_w, S_o)V C_f$.

The foam mobility reduction factor (M_r) is a numerical multiplier taken from the functional model of Eclipse:

$$M_r = \frac{1}{1 + (M_r \cdot F_s \cdot F_w \cdot F_o \cdot F_c)}$$

For this model, the gas mobility reduction factor is modeled in terms of a set of functions that represents the individual reduction factors due to the surfactant concentration (F_s), oil saturation (F_o), water saturation (F_w) and capillary number (F_c). These are combined multiplicatively with a reference mobility reduction factor (M_r) to determine the net mobility reduction factor (M_{r_f}) as shown in Figure 2.

Each of the foam controlling functions, such as F_s, F_w, F_o, and F_c is dependent on how surfactant behaves when it interacts with the porous media and regulated by two parameters: the property itself, which needs to be found by laboratory tests, and its exponent/weighting factor.

The reference mobility reduction factor M_r is typically in the range of 5 to 100 and corresponds to the normalised resistance to flow for a minimum bubble size in the absence of factors that increase bubble size. The values of (M_{r_f}) can vary between 0 and 1, where “0” means no gas flow.

Variations of the five functions can produce a large number of combinations, and the effect of one property can be compensated by effect of the other property. The most important function is F_s, while the other functions tend to change it, which after multiplying with M_r results in the reduction of gas flow.
To study the contribution of each of the functions to a general performance, their alterations were initially studied as a sensitivity analysis. The details of the sensitivity of each property were described in SPE_150829 (Spirov et al., 2012). The individual effect of each of the functions on foam mobility is estimated on the assumption that the other functions are equal to 1. For example, in Equation (3) foam mobility is calculated as a function of surfactant concentration F_s. To calculate the M_{sf} as a function of either capillary number (F_c) or oil saturation (F_o), or water saturation (F_w), (F_s) should be replaced with either function in this equation:

$$M_{sf} = \frac{1}{1 + (M_r \cdot F_s)}$$

The simulations were performed for the purpose of the sensitivity analysis to determine the variations of the property values affecting the shape and magnitude of the GOR curve with respect to historical GORH. Based on the results of the sensitivity analysis, the values providing the best match between the historical and simulated data were selected and shown in Table 1.

2 RESULTS AND DISCUSSION

2.1 Modeling of the Well Performance

In this section, we highlight a few of the simulated production responses at the producer P-39, together with a look back on historical trends compared against simulations of scenarios with and without foam.

To find the best match for the Snorre foam cycles, various combinations of variables, such as: the mobility reduction factor M_r, capillary number exponent, surfactant concentration exponent, oil (S_o), and water (S_w) saturations were tried at the given constant critical
Table 1

<table>
<thead>
<tr>
<th>Functions</th>
<th>Equation</th>
<th>Variable</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil saturation function (F_o)</td>
<td>(4)</td>
<td>$S_o^m = 0.1$ (best match 0.4)</td>
<td>$e_o = 1$</td>
</tr>
<tr>
<td>Surfactant conc. function (F_s)</td>
<td>(6)</td>
<td>$C_s^e = 0.1$ kg/Sm³</td>
<td>$e_s = 1$</td>
</tr>
<tr>
<td>Capillary number function (F_c)</td>
<td>(7)</td>
<td>$N_r^c = 1.0e-7$</td>
<td>$e_c = 0.1$</td>
</tr>
<tr>
<td>Foam reference mobility reduction factor for foam in water phase (M_f)</td>
<td>(8)</td>
<td>$M_f = 50$</td>
<td>/</td>
</tr>
<tr>
<td>Water saturation function (F_w)</td>
<td>(5)</td>
<td>$S_w^l = 0.1$</td>
<td>$f_w = 10$</td>
</tr>
<tr>
<td>Foam surfactant concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas-water interfacial tension as a function of foam surfactant concentration</td>
<td>/</td>
<td>0 kg/Sm³</td>
<td>10 mN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 kg/Sm³</td>
<td>5 mN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05 kg/Sm³</td>
<td>0.1 mN/m</td>
</tr>
<tr>
<td>Foam oil decay function foam water decay function</td>
<td>(9)</td>
<td>0</td>
<td>3 000/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2 500/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>Foam adsorption</td>
<td>(10)</td>
<td>0</td>
<td>0 kg/rm³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.0e-5 kg/rm³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1.0e-5 kg/rm³</td>
</tr>
</tbody>
</table>

The best match of foam parameters used for simulation in Eclipse

Surfactant concentration of 0.1 and limiting capillary number of 1.0e-7. The values of $M_f = 50$, $F_o = (0.4, 1)$, $F_w = (0.1, 10)$, $F_s = (0.1, 1)$ and $F_c = (1.0e-7, 0.1)$ provided the best match.

History Gas-Oil Ratio (GORH) and the best match for foam GOR are plotted together in Figure 3. Five periods of elevated GORH values, called peaks and denoted as: 1, 2, 3, 4 and 5, are distinguishable from the beginning of the gas injection until the end of 2001. The surfactant injection periods are shown as slug 1 and slug 2 starting at the end of the 2nd peak. The present simulations aimed to obtain the best match of GORH and GOR of the peaks numbered 3, 4 and 5.

The 3rd peak of GOR was predicted two-and-a-half months later than GORH. GOR in the interval between the 3rd and 4th peaks matched in time but was lower in value. The 4th peak matched satisfactorily. GOR in the interval between the 4th and 5th peaks was higher than GORH; the start of the 5th peak was predicted 3 months earlier. Because GORH is a result of the division of oil (OPRH) and gas (GPRH) production rates, the match of the aforementioned parameters and their simulation were analysed.

The foam model predicted higher oil production OPR due to the surfactant injection immediately after 1st slug, as can be seen in Figure 4. Simulated OPR closely
matched to OPRH after the 2nd slug in the periods of 3rd and 4th peaks while the oil production OPRH was much higher than the simulated OPR at the beginning of the 5th peak during about two months.

In order to analyse the response of the injection in the production well, the Gas Injection Rate (GIR) was shifted at 56 days to find the match with the GPRH and plotted additionally in Figure 5. The shift shows a period of gas travelling from the injector to the producer. To find a match with the 5th GORH peak, the GIR was shifted at 40 days indicating that the duration of the gas travel became shorter by the end of the project.

Totally, 1.32×10^8 Sm3/day was injected, whereas 1.3×10^8 Sm3/day was produced.

The 3rd peak at GPR started with approximately two months delay predicting an immediate foam generation. The divergence between GPRH and GPR between the 3rd and the 4th peaks is not substantial. All the other peaks of GPR mimic the shape of the GPRH with a few exceptions. The general observation of Figure 4 and Figure 5 allows making conclusion that in the periods, where the foam model overestimates GPR, the OPR is underestimated and vice versa, causing the divergence between GOR and GORH in the corresponding periods. For example, the beginning of the 5th peak in GOR starts two months later than at OPR/OPRH and GPR/GPRH due to the underestimation of oil production and overestimation of gas production. It can be also deduced that the GPR values are simulated more accurately than OPR, and due to that the GOR values are more affected by oil production rate. The higher oil production rates at the start of the 5th peak, long after the completion of the last surfactant injection, could probably be attributed to the delayed foam effect. In addition, first three periods of GPRH coincide in time with the gas injection (GIR), while the 4th peak starts with the delay of 2.5 months, shown by the left-right arrow in Figure 5, reflecting the foam effect.

Additionally, the no-foam scenario was modeled to view how the production would have occurred if surfactants were not applied. For the no-foam model, the start of the 3rd period was delayed at one month and the simulated GOR was much higher (Fig. 6). There was no delay between the 3rd peaks of GIR and GORH, indicating that the foam was not strong enough after the initial small slug, as could have been expected from laboratory investigations (Schramm, 1994). The no-foam model suggests that if the foam was not applied, the entire 4th period would have occurred five to six months earlier than it actually did and at much higher GOR values (Fig. 6). The model also predicted that GOR in the 5th period could have been much higher and gas would have arrived two to three months earlier.

The GPR of no-foam scenario very closely followed GPRH in the period of the 3rd peak in Figure 7, indicating that the surfactant injection did not influence gas flow after the 1st slug. The 56 days of travel time between injector and producer similar to the 1st and 2nd periods, when no surfactant was injected, confirmed that. It needs to be noted that no injections have occurred during 6 days after the 1st slug. Probably due to that the foam generation delayed, whereas the model predicted immediate foam effect. To match the history data, the simulation of the 3rd peak should be done using $M_r = 1$. The 3rd peak of GOR for the no-foam model transformed
smoothly into the 4th; however, there is a clear boundary between the 3rd and 4th peak of GPR. Similarly to GIR-GPRH, the beginning of the 4th peak at GIR occurred approximately three-and-a-half months earlier than the 4th peak at GOR. The 2nd horn of the 4th peak of GORH, shown as the down arrow, occurred when there was no gas injection and GPRH was not high.

It could be deduced that although the view of GOR depending on both GPR and OPR distorted the real vision of the peaks distribution, the gas breakthrough at the beginning of the 4th period, shown by the left-right arrow, was significantly reduced after the 2nd slug but not postponed.

2.2 Comparison with the Previous Simulations Studies

Few studies have been devoted to foam simulation on a field scale.

Previous simulation of the foam performance for WFB of the Snorre field was performed using the STARS model. The model implemented in Eclipse by Statoil was converted to STARS and a sector of WFB was selected for a rapid sensitivity analysis in SPE 75157 (Skauge et al., 2002) and SPE 77695 (Aarra et al., 2002). It was believed that the STARS model is the best option to simulate foam under Snorre field conditions, but comparable simulators containing the essential foam parameter are LE foam model, UTCHEM, Shell simulator MoReS. The field-observed GORH behaviour following the second surfactant injection, performed in the period 26/2-15/3/2000, indicated a constant GORH for several months. The general trend in all the simulation runs showed an increasing GOR with time. This behaviour was very difficult to match using foam simulations. The lack of history match of the field-observed GORH development, after the second surfactant slug, made it difficult to describe the possible properties of the foam generated in the reservoir (Skauge et al., 2002).

This paper describes the approbation of a new foam functional screening model in ECLIPSE 2009.1 software, using foam as the tracer in the water phase and the selection of the foam parameters that could better match the model to actual data. Previous 2002 and 2006 Eclipse versions contained tabular model. Since that time, the foam conservation equation has been fully upgraded in Equation (1) and many new properties shown in Figure 1 were not present in older versions of Eclipse.

Compared with earlier simulations performed in 2002-2005, the history match of the field data with simulated in the present study is extended for the entire period from 12 September 1998 - 1 January 2003 and includes the periods of the 4th and 5th peaks. Comparison with the simulation results from previous work in STARS (Aarra et al., 2002) can be made only for the 3rd peak due to unavailability of the other data. STARS predicted the similar delay in GOR of approximately two months. We have shown that the delay is caused by the overestimation of the Oil Production Rate (OPR), because both simulators predict the immediate foam generation after the 1st slug. Whether that is due to the absence of any injections following the 1st slug is difficult to determine.

CONCLUSIONS

The simulation of the FAWAG performance using the New Eclipse Functional Foam model matches the historical data for the entire period from 12 September 1998 - 1 January 2003. The best match of GORH and GOR was obtained at $S_o^g = 0.4$.
The 1st surfactant slug did not reduce gas production rate substantially while the effect of the 2nd slug on the gas production rate decrease can be traced in the period of the 4th peak and on the oil production rate increase in the period of the 5th peak.

A comparison of runs with and without foam showed that although the presence of foam reduced the GORH and GPRH considerably, it did not stop or delay gas flow.

To improve the match of the GOR with history data, some discrepancies between over- and underestimations of GPR and OPR should be eliminated. Multiple M_s's should be used for different foam cycles rather than just one single value.

ACKNOWLEDGMENTS

The authors would like to thank Statoil ASA for authorizing data presented in this paper, Schlumberger Technology Centre and Arif Khan for advisory and software support.

REFERENCES

Manuscript accepted in September 2013
Published online in April 2014