This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 69, No. 5, pp. 773-969 and available online here

Cet article fait partie du dossier thématique ci-dessous publié dans la revue OGST, Vol. 69, n°5, pp. 773-969 et téléchargeable ici

DOSSIER Edited by/Sous la direction de : P.-L. Carrette

PART 1

Post Combustion CO₂ Capture

Captage de CO₂ en postcombustion

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 5, pp. 773-969

Copyright © 2014, IFP Energies nouvelles

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>Editorial</td>
</tr>
<tr>
<td>785</td>
<td>CO₂ Capture Rate Sensitivity Versus Purchase of CO₂ Quotas. Optimizing Investment Choice for Electricity Sector</td>
</tr>
<tr>
<td>793</td>
<td>Emissions to the Atmosphere from Amine-Based Post-Combustion CO₂ Capture Plant – Regulatory Aspects</td>
</tr>
<tr>
<td>805</td>
<td>Formation and Destruction of NDDEA in 30 wt% MEA (Monoethanolamine) and 50 wt% DEA (Diethanolamine) Solutions</td>
</tr>
<tr>
<td>821</td>
<td>Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Targeted Degradation Compounds of Ethanolamine Used in CO₂ Capture: Application to Real Samples</td>
</tr>
<tr>
<td>833</td>
<td>Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation</td>
</tr>
<tr>
<td>851</td>
<td>CO₂ Absorption by Biphasic Solvents: Comparison with Lower Phase Alone</td>
</tr>
<tr>
<td>885</td>
<td>Modeling of the CO₂ Absorption in a Wetted Wall Column by Piperazine Solutions</td>
</tr>
<tr>
<td>903</td>
<td>Piperazine/1-methylpiperazine/N,N'-dimethylpiperazine as an Aqueous Solvent for Carbon Dioxide Capture</td>
</tr>
<tr>
<td>915</td>
<td>Corrosion in CO₂ Post-Combustion Capture with Alkanolamines – A Review</td>
</tr>
<tr>
<td>931</td>
<td>Aqueous Ammonia (NH₃) Based Post-Combustion CO₂ Capture: A Review</td>
</tr>
<tr>
<td>947</td>
<td>Enhanced Selectivity of the Separation of CO₂ from N₂ during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions</td>
</tr>
<tr>
<td>969</td>
<td>Erratum</td>
</tr>
</tbody>
</table>

© Photos : DOI:10.2516/ogst/2013201, Fotolia/yuliadarling, IFPE N, X.
Piperazine/N-methylpiperazine/N,N'-dimethylpiperazine as an Aqueous Solvent for Carbon Dioxide Capture

Stephanie A. Freeman, Xi Chen, Thu Nguyen, Humera Rafique, Qing Xu and Gary T. Rochelle*

Department of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin, TX 78712 - USA

Abstract — A blend of piperazine (PZ), N-methylpiperazine (MPZ) and N,N'-dimethylpiperazine (DMPZ) is described as a novel CO₂ capture solvent for aqueous absorption-stripping. This blend provides improved solid solubility and heat of absorption compared to concentrated PZ. No insolubility was observed for regions of high CO₂ loading, unlike PZ solvents. The blend performed like concentrated PZ in terms of CO₂ capacity and CO₂ absorption rate, both of which were more than double that of a traditional 7 molal (30 wt%) MonoEthanolAmine (MEA). Thermal equilibrium was established between the three constituent amines that increases the thermal stability compared to traditional blended solvents. The primary drawback of this novel solvent system is enhanced amine volatility at absorber conditions compared with both concentrated PZ and MEA.
INTRODUCTION

Amine-based absorption-stripping is the most promising solution for post-combustion carbon dioxide (CO₂) capture from coal-fired power plant flue gas. Advanced amine solvents such as concentrated, aqueous piperazine (PZ) are being proposed to replace traditional alkanolamines such as MonoEthanolAmine (MEA) due to advantageous CO₂ absorption rates and overall energy performance [1, 2]. A new solvent concept proposed here is the use of amines that demonstrate noticeable levels of overall thermal degradation but degrade to useful products that can react with CO₂ and maintain alkalinity of the solution. One example of this solvent concept presented here is the use of a blend of PZ, N-methylpiperazine (MPZ), and N,N'-dimethylpiperazine (DMPZ) [3].

Thermal degradation and oxidation are the two primary routes of amine loss during absorption-stripping along with volatilization of the amine in the absorber. Thermal degradation and oxidation of MEA and other alkanolamines have been investigated extensively previously and the impact of degradation was determined to be an important factor in solvent selection [4-12]. The thermal degradation of MEA generated products that have none or only limited CO₂ reactivity, effectively reducing the CO₂ capacity of the solvent. Other classes of amines have been found to generate CO₂-carrying molecules as products that mitigate the overall effect of thermal degradation. For example, concentrated PZ solutions has been found to produce high concentrations of N-formylpiperazine (FPZ), N-(2-aminoethyl)piperazine (AEP) and ethylenediamine (EDA) during thermal degradation which can react with CO₂ directly (AEP and EDA), or be easily reacted to create PZ (FPZ and other amides) [13]. The same has been seen for N-methyldiethanolamine (MDEA)/PZ which degrades to diethanolamine (DEA) and substituted PZ molecules (1-methylpiperazine, N-(2-hydroxyethyl) piperazine and others) which can react and carry CO₂ during absorption-stripping [14, 15].

The blend of PZ, MPZ and DMPZ offers a solvent that takes advantage of the mixture of multiple amines with CO₂-carrying capacity that can interconvert to become degradation products of each other. The concept is to develop the solvent with a composition stable to thermal degradation that maximizes CO₂ capacity and absorption rate. In developing this solvent, the pertinent physical and thermodynamic properties of the blend that affect its expected performance in a CO₂ capture unit were investigated. Solid solubility, density and viscosity were evaluated over the expected range of CO₂ loading. CO₂ solubility, CO₂ capacity, heat of absorption, amine volatility and CO₂ absorption rate were studied over the pertinent range of lean and rich conditions expected. Finally, the thermal stability and thermal equilibrium of the amine blend were evaluated to determine the degradation potential of the solvent. In each case, the properties of the blend are compared to 8 molal (m) PZ, 7 m MEA, or both solvents to determine the advantages and disadvantages of the solvent compared to current base-line solvents.

1 MATERIALS AND METHODS

1.1 Solution Preparation

Aqueous amine solutions were prepared as described previously with few modifications [13, 16, 17]. Anhydrous PZ (IUPAC: 1,4-diazacyclohexane, CAS 110-85-0, purity 99%, Acros Organics N.V., Geel, Belgium), MPZ (IUPAC: 1-methyl-piperazine, CAS 109-01-3, purity > 99%, Acros Organics), and DMPZ (IUPAC: 1,4-dimethyl-piperazine, CAS 106-58-1, purity 98.5%, Acros Organics) were obtained commercially and used without further purification. Blends were prepared gravimetrically by combining all three amines with water at the desired concentrations and then heating to melt the PZ. Then, the hot, aqueous solution was transferred to a gas washing bottle where CO₂ (99.5%, Matheson Tri Gas, Basking Ridge, NJ, USA) was gravimetrically sparged to achieve the desired CO₂ concentration [16, 17]. Total alkalinity was verified through titration and CO₂ concentration was verified through Total Inorganic Carbon (TIC) analysis as described previously [13, 18]. CO₂ loading, x, is reported as mol CO₂/mol alkalinity, which corresponds to mol CO₂/ equivalent of amine nitrogen.

1.2 Solid-Liquid Equilibrium Measurements

Solid-liquid equilibrium of blended amine solutions was measured through observation of the conditions under which precipitation occurred. For the amine blend of interest, solutions containing a range of CO₂ loading were prepared by combining unloaded and a maximum rich loaded solution. The maximum rich loaded condition was the highest CO₂ loading found to remain soluble at controlled temperature at or below room temperature. The transition temperature between solid and liquid phases was observed by slowly heating a solution at a given CO₂ loading containing precipitation and observing the phase change, as previously described [16]. All solutions were observed for any precipitation at temperatures between 0°C and the melting point of the solid phase of the amine solution.

1.3 Equilibrium Cell for Volatility

Amine volatility was measured in a stirred 1 L equilibrium cell coupled with a hot gas DX-4000 Fourier Transform Infrared Spectroscopy (FTIR) analyzer (Gasmet Technologies Inc., La Prairie, Canada) as shown in Figure 1 and described previously [19]. The insulated glass reactor was agitated at 350 rpm using an overhead stirrer and temperature in the reactor was controlled by recirculating dimethylsilicone oil. Vapor from the headspace of the reactor was pumped at 5 to 10 L/minute through a heated Teflon/C210 line to the FTIR. Both the sample line and analyzer were maintained at 180°C to prevent liquid condensation or adsorption of amine. The FTIR quantified amine, CO₂, and water concentration in the vapor phase. After the gas was analyzed in the FTIR, it was returned to the reactor through a second heated line maintained 55°C hotter than the reactor temperature. The 55°C difference was sufficient to ensure that the returned gas did not upset the liquid-vapor equilibrium inside the reactor and to prevent potential heat loss at the bottom of the reactor.

1.4 High Temperature VLE Apparatus for CO₂ Solubility

A high temperature vapor-liquid equilibrium apparatus was used to measure CO₂ solubility in aqueous amine solutions. A 500 mL stainless steel autoclave with an agitator and a heating jacket was used as the equilibrium cell. The method details have been described previously [20]. Total pressure of the CO₂ loaded blend at 100-160°C was measured with ± 2.4 kPa accuracy. CO₂ partial pressure was derived by subtracting partial pressure of N₂ and water from the equilibrium total pressure. Data for the partial pressure of water were taken from the DIPPR database and was assumed to follow Raoult’s Law [21]. The partial pressure of nitrogen at the experimental condition was calculated using a low temperature pressure measurement and the assumption that nitrogen behaves as an ideal gas. Liquid samples were collected before and after each experiment at room temperature, analyzed for amine concentration by acid titration and total CO₂ by TIC analysis, and corrected for the gas phase CO₂ at each condition to get CO₂ loading at high temperature.

1.5 Wetted Wall Column for Absorption Rates and CO₂ Solubility

The wetted wall column used in this study to characterize the mass transfer coefficient of amine solution (kg') is the same apparatus that had been described previously by Cullinane et al. and Dugas et al. [22, 23]. In a typical experiment, a gas mixture of nitrogen and CO₂ counter currently contacted the amine solution under study. The flux of CO₂ (NCO₂) between gas and liquid phases for any given condition was calculated from the difference between inlet and outlet CO₂ concentrations quantified using an IR analyzer. By varying the inlet CO₂ partial pressure, both absorption and desorption were observed. The equilibrium CO₂ partial pressure of the amine solution, PCO₂,1, was calculated using absorption and desorption data to estimate the pressure where zero flux occurs.

The overall mass transfer coefficient (KG) was calculated as the ratio of the NCO₂ and the gas phase partial pressure driving force between the inlet CO₂ partial pressure, PCO₂,1 and PCO₂,1, as shown in Equation (1):

\[KG = \frac{N_{CO_2}}{P_{CO_2,g} - P_{CO_2,l}} \]

(1)

The series resistance correlation for gas absorption into liquid is shown in Equation (2). The liquid film mass transfer coefficient based on a partial pressure driving force, kg', correlates with the experimental conditions and geometry of the apparatus as established above (2):

\[\frac{1}{k_g'} = \frac{1}{K_G} - \frac{1}{k_g'} \]

(2)

The values for k_g were estimated from a previous correlation [1]. Data for the kinetic absorption rate and CO₂ solubility were obtained simultaneously with this technique.
1.6 Thermal Cylinders for Thermal Degradation

Thermal degradation of amine solutions was assessed using thermal cylinders as described previously [4, 13, 18]. Cylinders consisted of (1/2)-inch OD 316 stainless steel tubing with two stainless steel Swagelok® fittings and end caps (Swagelok Company, Solon, OH, USA). Cylinders were filled with 10 mL of the amine solution of interest, sealed according to Swagelok® specifications, and placed in forced convection ovens maintained at the experimental temperature. Individual cylinders were removed from the oven periodically and the liquid contents were analyzed for total alkalinity and CO₂ concentration, and analyzed using cation ion chromatography to quantify the parent amines and cationic degradation products.

1.7 Cation Ion Chromatography (IC)

Cation Ion Chromatography (cation IC) was used to quantify PZ, MPZ, DMPZ and other cation degradation products in solution. A Dionex ICS-2500 Ion Chromatography System with AS autosampler was used as described previously (Dionex Corporation, Sunnyvale, CA, USA) [4, 13, 18]. Separation occurred in an IonPac GC17 guard (4 × 50 mm) and CS17 analytical column (4 × 250 mm) with varying concentrations of methanesulfonic acid in analytical grade water and conductivity detector cell.

2 RESULTS AND DISCUSSION

2.1 Physical Properties of PZ/MPZ/DMPZ Blends

2.1.1 Solid Solubility

The solid solubility of 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ with varying concentrations of CO₂ was observed. At room temperature (25°C), a maximum CO₂ loading of 0.39 mol CO₂/mol alkalinity without any solid precipitation was obtained for 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ. At 20°C, a higher maximum loading of 0.43 mol CO₂/mol alkalinity was obtained without solids precipitation. Neither MPZ nor DMPZ were found to precipitate in aqueous solution in the absence of PZ. PZ apparently precipitates as PZ·6H₂O in the blended solvent.

The transition temperature of this blend at 0 to 0.39 mol CO₂/mol alkalinity was observed in order to quantify the solubility envelope where an aqueous amine solution is known to exist. The transition temperature over this range of CO₂ loading for 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ is shown in Figure 2. The transition temperatures of 8 m PZ are included in the figure for comparison purposes [18]. For the blend, the temperature at which any precipitation in the solution completely melted or the liquid precipitated into a solid was obtained and the transition point recorded.

The blended system has a larger solubility envelope and this solvent is predicted to have fewer solubility issues than a concentrated PZ system. In CO₂-loaded, concentrated PZ, solid PZ hexahydrate (PZ·6H₂O) is formed where the loading is less than 0.22 mol CO₂/mol alkalinity and the temperature is less than 25°C [13]. The blend contains less PZ and PZ·6H₂O, the expected solid formed in the blend in the same region of Figure 2, precipitates at lower temperature and CO₂ loading. This behavior expands the solubility envelope and usefulness of the blend.

At CO₂ loading greater than 0.43 mol CO₂/mol alkalinity, 8 m PZ was found to form hydrated protonated PZ carbamate (H⁺PZCOO⁻·H₂O) when precipitation occurred [16]. No solids precipitated in 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ at any of the high CO₂ concentrations tested. It appears that at least 4 m PZ is required to form significant concentrations of H⁺PZCOO⁻, so this species is not present to precipitate in its hydrated form in the blended solvent.

2.1.2 Density and Viscosity of 5 m PZ/2 m MPZ/1 m DMPZ

The density and viscosity of 5 m PZ/2 m MPZ/1 m DMPZ were measured from 0 to 0.39 mol CO₂/mol alkalinity and 10 to 80°C (283.15 to 353.15 K). Data were obtained for all solutions where solid precipitation and CO₂ evolution were absent. The raw data are shown
in Table 1 with CO2 concentration reported in units of CO2 loading and mol/kg. The density and viscosity data are compared to that of 8 m PZ at 40 and 60°C in Figure 3 and Figure 4, respectively. The data demonstrate the expected trends of increased density and viscosity with increasing CO2 loading and decreasing temperature. In comparison with 8 m PZ, the blend demonstrates a lower density and higher viscosity at a given CO2 loading at 40 and 60°C. The higher viscosity of the blend, approximately 25% higher across the board, is a slight disadvantage of this solvent as it is expected to decrease mass transfer and reduce heat transfer coefficients.

The viscosity of 5 m PZ/2 m MPZ/1 m DMPZ is correlated well in terms of the viscosity of water obtained from DIPPR, μ_{water}, CO2 concentration in mol/kg, C_{CO_2} and temperature in Kelvin, T [21]. The details of the regression and parameters are shown in Equations (3, 4) and Table 2. The regression was able to fit all data.

TABLE 1
Density and viscosity of 5 m PZ/2 m MPZ/1 m DMPZ

<table>
<thead>
<tr>
<th>CO2 loading (mol/mol alk)</th>
<th>CO2 (mol/kg)</th>
<th>T (°C)</th>
<th>Density (ρ) (g/cm³)</th>
<th>Viscosity (μ) (mPa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1.661</td>
<td>10</td>
<td>1.0937</td>
<td>42.320 ± 0.042</td>
</tr>
<tr>
<td>0.23</td>
<td>1.900</td>
<td>10</td>
<td>1.1031</td>
<td>42.940 ± 0.070</td>
</tr>
<tr>
<td>0.29</td>
<td>2.411</td>
<td>10</td>
<td>1.1221</td>
<td>44.240 ± 0.070</td>
</tr>
<tr>
<td>0.33</td>
<td>2.680</td>
<td>10</td>
<td>1.1358</td>
<td>44.440 ± 0.070</td>
</tr>
<tr>
<td>0.37</td>
<td>2.940</td>
<td>10</td>
<td>1.1490</td>
<td>44.390 ± 0.088</td>
</tr>
<tr>
<td>0.39</td>
<td>3.105</td>
<td>10</td>
<td>1.1553</td>
<td>44.290 ± 0.120</td>
</tr>
<tr>
<td>0.33</td>
<td>0.894</td>
<td>25</td>
<td>1.0553</td>
<td>18.030 ± 0.082</td>
</tr>
<tr>
<td>0.15</td>
<td>1.286</td>
<td>25</td>
<td>1.0707</td>
<td>19.290 ± 0.110</td>
</tr>
<tr>
<td>0.2</td>
<td>1.661</td>
<td>25</td>
<td>1.0856</td>
<td>20.540 ± 0.178</td>
</tr>
<tr>
<td>0.23</td>
<td>1.900</td>
<td>25</td>
<td>1.0955</td>
<td>21.310 ± 0.173</td>
</tr>
<tr>
<td>0.29</td>
<td>2.411</td>
<td>25</td>
<td>1.1147</td>
<td>22.790 ± 0.242</td>
</tr>
<tr>
<td>0.33</td>
<td>2.680</td>
<td>25</td>
<td>1.1287</td>
<td>23.380 ± 0.199</td>
</tr>
<tr>
<td>0.37</td>
<td>2.940</td>
<td>25</td>
<td>1.1421</td>
<td>23.870 ± 0.200</td>
</tr>
<tr>
<td>0.39</td>
<td>3.105</td>
<td>25</td>
<td>1.1481</td>
<td>23.960 ± 0.212</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1.0117</td>
<td>7.420 ± 0.095</td>
</tr>
<tr>
<td>0.05</td>
<td>0.478</td>
<td>40</td>
<td>1.0290</td>
<td>8.261 ± 0.122</td>
</tr>
<tr>
<td>0.05</td>
<td>0.478</td>
<td>40</td>
<td>1.0290</td>
<td>8.261 ± 0.122</td>
</tr>
<tr>
<td>0.15</td>
<td>1.286</td>
<td>40</td>
<td>1.0618</td>
<td>9.993 ± 0.157</td>
</tr>
<tr>
<td>0.2</td>
<td>1.661</td>
<td>40</td>
<td>1.0772</td>
<td>10.900 ± 0.226</td>
</tr>
<tr>
<td>0.23</td>
<td>1.900</td>
<td>40</td>
<td>1.0874</td>
<td>11.390 ± 0.213</td>
</tr>
<tr>
<td>0.29</td>
<td>2.411</td>
<td>40</td>
<td>1.1073</td>
<td>12.570 ± 0.206</td>
</tr>
<tr>
<td>0.33</td>
<td>2.680</td>
<td>40</td>
<td>1.1214</td>
<td>13.290 ± 0.311</td>
</tr>
<tr>
<td>0.37</td>
<td>2.940</td>
<td>40</td>
<td>1.1347</td>
<td>13.680 ± 0.319</td>
</tr>
<tr>
<td>0.39</td>
<td>3.105</td>
<td>40</td>
<td>1.1408</td>
<td>13.960 ± 0.337</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0.9957</td>
<td>3.666 ± 0.125</td>
</tr>
</tbody>
</table>

(continued)
with an average error of only 2.0% and a maximum deviation of 5.1%:

\[
\ln \left(\frac{\mu}{\mu_{\text{water}}} \right) = \phi_1 + \phi_2 \cdot T + \frac{\phi_3}{T} \quad (3)
\]

\[
\phi_i = a_i + b_i \times C_{CO_2} \quad (4)
\]

2.2 Thermodynamic Properties of PZ/MPZ/DMPZ

2.2.1 CO₂ Solubility

The CO₂ partial pressure, \(P_{CO_2} \), of 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ was measured from 40 to 160°C for a range of CO₂ loading. Data were obtained from the

Table 1 (continued)

<table>
<thead>
<tr>
<th>CO₂ loading (mol/mol alk)</th>
<th>CO₂ (mol/kg)</th>
<th>(T) (°C)</th>
<th>Density ((\rho)) (g/cm³)</th>
<th>Viscosity ((\mu)) (mPa·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.478</td>
<td>60</td>
<td>1.0139</td>
<td>4.157 ± 0.124</td>
</tr>
<tr>
<td>0.1</td>
<td>0.894</td>
<td>60</td>
<td>1.0317</td>
<td>4.698 ± 0.180</td>
</tr>
<tr>
<td>0.15</td>
<td>1.286</td>
<td>60</td>
<td>1.0486</td>
<td>5.310 ± 0.226</td>
</tr>
<tr>
<td>0.2</td>
<td>1.661</td>
<td>60</td>
<td>1.0644</td>
<td>5.900 ± 0.243</td>
</tr>
<tr>
<td>0.23</td>
<td>1.900</td>
<td>60</td>
<td>1.0750</td>
<td>6.354 ± 0.246</td>
</tr>
<tr>
<td>0.29</td>
<td>2.411</td>
<td>60</td>
<td>1.0951</td>
<td>7.045 ± 0.293</td>
</tr>
<tr>
<td>0.33</td>
<td>2.680</td>
<td>60</td>
<td>1.1097</td>
<td>7.698 ± 0.369</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0.9786</td>
<td>2.035 ± 0.051</td>
</tr>
<tr>
<td>0.05</td>
<td>0.478</td>
<td>80</td>
<td>0.9978</td>
<td>2.289 ± 0.104</td>
</tr>
<tr>
<td>0.1</td>
<td>0.894</td>
<td>80</td>
<td>1.0165</td>
<td>2.628 ± 0.123</td>
</tr>
<tr>
<td>0.15</td>
<td>1.286</td>
<td>80</td>
<td>1.0337</td>
<td>3.039 ± 0.142</td>
</tr>
<tr>
<td>0.20</td>
<td>1.661</td>
<td>80</td>
<td>1.0511</td>
<td>3.277 ± 0.160</td>
</tr>
<tr>
<td>0.23</td>
<td>1.900</td>
<td>80</td>
<td>1.0614</td>
<td>3.696 ± 0.103</td>
</tr>
<tr>
<td>0.29</td>
<td>2.411</td>
<td>80</td>
<td>-</td>
<td>4.163 ± 0.192</td>
</tr>
<tr>
<td>0.33</td>
<td>2.680</td>
<td>80</td>
<td>-</td>
<td>5.350 ± 0.196</td>
</tr>
</tbody>
</table>

Figure 3

A comparison of the density of 5 m PZ/2 m MPZ/1 m DMPZ at 10 (●), 25 (■), 40 (▲), 60 (●), and 80°C (*) and 8 m PZ at 40 (Δ) and 60°C (○).

Figure 4

A comparison of the viscosity of 5 m PZ/2 m MPZ/1 m DMPZ at 10 (●), 25 (■), 40 (▲), 60 (●), and 80 °C (*) and 8 m PZ at 40 (Δ) and 60°C (○).
equilibrium cell at 40°C, the wetted wall column for 40 to 100°C, and the high temperature VLE apparatus from 100 to 160°C. The total pressure, P_{total}, was obtained from the high temperature measurements and the P_{CO_2} was estimated as described above. The CO$_2$ solubility values measured directly from the equilibrium cell and wetted wall column are compared in Table 3. The estimated P_{CO_2} and P_{total} measurements are shown in Table 4.

The CO$_2$ solubility measured from 40 to 160°C is shown in Figure 5 as the P_{CO_2} plotted against the CO$_2$ loading. Data from three separate experimental apparatuses, the wetted wall column, high temperature VLE apparatus and equilibrium cell, are shown and demonstrate strong agreement that provides confidence in the data. An empirical model for the prediction of P_{CO_2} was developed using the data from 40 to 160°C (excluding the single point from the equilibrium cell). The regressed form of the model is shown in Equation (5) where the natural log of P_{CO_2} in Pa is predicted as a function of CO$_2$ loading, α, and temperature in K, T.

\[
\ln P_{\text{CO}_2} = (34.4 \pm 0.2) + \frac{(-10597 \pm 81)}{T} \\
+ (7627 \pm 177) \cdot \frac{\alpha}{T} \tag{5}
\]

2.2.2 CO$_2$ Capacity

The intrinsic CO$_2$ capacity of 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ was estimated assuming lean loading (0.23 mol CO$_2$/mol alkalinity) and rich loading (0.33 mol CO$_2$/mol alkalinity) that correspond to P_{CO_2} values at 40°C of 0.5 and 5 kPa, respectively. These two pressure values are estimates of the P_{CO_2} that would provide an appropriate driving force at the bottom or top of the absorber [1, 24]. With the appropriate unit conversions, the capacity of the blend is 0.88 mol CO$_2$/kg (amine + water). This compares to an intrinsic CO$_2$ capacity of 0.79 and 0.47 mol CO$_2$/kg (amine + water) for 8 m PZ and 7 m MEA, respectively [25, 26].

2.2.3 Estimation of Heat of Absorption

The heat of CO$_2$ absorption (ΔH_{abs}) in 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ was estimated from the derivative of Equation (5) according to the Gibbs-Helmholtz Equation (Eq. 6) and is given by Equation (7). Over the expected CO$_2$ loading range, 0.23 to 0.33 mol CO$_2$/mol

Table 3

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>CO$_2$ loading (mol/mol alk)</th>
<th>P_{CO_2} (kPa)</th>
<th>k^*_e (mol/s.Pa.m2)</th>
<th>Source$^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.21</td>
<td>0.3</td>
<td>2.5×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>40</td>
<td>0.23</td>
<td>0.3</td>
<td>-</td>
<td>EC</td>
</tr>
<tr>
<td>40</td>
<td>0.25</td>
<td>0.8</td>
<td>1.2×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>40</td>
<td>0.29</td>
<td>2.1</td>
<td>9.2×10^{-7}</td>
<td>WWC</td>
</tr>
<tr>
<td>40</td>
<td>0.32</td>
<td>4.5</td>
<td>5.6×10^{-7}</td>
<td>WWC</td>
</tr>
<tr>
<td>60</td>
<td>0.21</td>
<td>1.7</td>
<td>2.6×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>60</td>
<td>0.25</td>
<td>3.8</td>
<td>1.5×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>60</td>
<td>0.29</td>
<td>9.9</td>
<td>8.7×10^{-7}</td>
<td>WWC</td>
</tr>
<tr>
<td>60</td>
<td>0.32</td>
<td>19.0</td>
<td>5.1×10^{-7}</td>
<td>WWC</td>
</tr>
<tr>
<td>80</td>
<td>0.21</td>
<td>8.0</td>
<td>2.1×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>80</td>
<td>0.25</td>
<td>16.8</td>
<td>1.1×10^{-6}</td>
<td>WWC</td>
</tr>
<tr>
<td>100</td>
<td>0.21</td>
<td>29.2</td>
<td>1.3×10^{-6}</td>
<td>WWC</td>
</tr>
</tbody>
</table>

$^{(1)}$ WWC = wetted wall column; EC = equilibrium cell.
alkalinity, the ΔH_{abs} predicted with Equation (7) varies from 73.5 to 67.2 kJ/mol:

$$\Delta H_{\text{abs}} = -R \frac{\partial (\ln P_{\text{CO}_2})}{\partial (\frac{1}{T})}$$ \hspace{1cm} (6)

$$\Delta H_{\text{abs}} = -R \cdot (-10597 + 7627 \cdot \alpha)$$ \hspace{1cm} (7)

2.2.4 Amine Volatility

The volatility of amines in 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ was measured at 40°C and a nominal lean loading of 0.23 mol CO$_2$/mol alkalinity, the conditions expected at the top of the absorber. The conditions that exist at the top of the absorber are the most important for volatility comparisons in order to assess potential fugitive losses to the atmosphere. For this solvent, this condition resulted in a P_{CO_2} of 287 Pa and partial pressure of water, $P_{\text{H}_2\text{O}}$, or 5 875 Pa. The measured amine volatility of each of the three amine components in the blend is presented in Table 5 as the partial pressure of each amine (P_{PZ}, P_{MPZ} and P_{DMPZ}). The amine volatility for 8 m PZ and 7 m MEA are also shown for comparison purposes [19]. The CO$_2$ loading for these two baseline systems were also chosen to mimic the operating conditions expected at the top of the absorber.

Based on the results, it is clear that methylation increases volatility. The volatility of MPZ and DMPZ are significantly higher than that of PZ in the blend and by itself, suggesting a significant impact of methylation on the behavior of the amino function. Even though DMPZ is present only in a small concentration, 0.5 m, its volatility is the highest and 65 times greater than PZ. The fact that this molecule has two methyl groups renders it fairly nonpolar in the polar environment consisting of water and electrolytes. Therefore, DMPZ has
unfavorable interactions with the surrounding species and is highly volatile. MPZ also suffers the effects of a nonpolar methyl group but to a lesser extent than DMPZ. This observation highlights the fact that degradation products can be more volatile than the parent amine itself, even at small concentrations, an important fact in solvent selection.

2.2.5 CO₂ Absorption Rate

The liquid film mass transfer coefficient \((k'_{\text{g}}) \) for 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ was measured from 40 to 100°C at a range of loadings (Fig. 6 and Tab. 3). The use of \(P_{\text{CO₂}} \) at 40°C as the abscissa allows direct comparison of rate data at different temperature as well as for different amine solvents on the same basis without influences from differences in CO₂ loading. The range of \(P_{\text{CO₂}} \) from 0.5 to 5 kPa, as used previously for capacity calculations, represents a reasonable driving force between gas and liquid at the top and bottom of an absorber expected during the treatment of flue gas from coal-fired power plant. At 0.5 kPa and 40°C, the expected conditions at the lean end of the absorber, the \(k'_{\text{g}} \) of the blend is \(2.0 \times 10^{-6} \text{ mol/s.Pa.m}^2 \) compared to \(2.1 \times 10^{-6} \) and \(7.6 \times 10^{-7} \text{ mol/s.Pa.m}^2 \) for PZ and MEA, respectively.

The temperature range expected for the absorber is 40 to 60°C. In this temperature range, the rate for the blend stays relatively constant, approximately equal to that for 8 m PZ and over 2.5 times faster than 7 m MEA. Temperature above 60°C leads to a decrease in the mass transfer rate of the blend, as has been observed for other amine systems [24-26]. The blend performed as well as concentrated PZ and represents another solvent that can outperform the baseline MEA solvent.

2.3 Behavior of the Blend at High Temperature

2.3.1 Thermal Degradation of the PZ-Based Blends

The thermal behavior of PZ/MPZ/DMPZ was studied at 150°C. This temperature represents the expected temperature of the stripper and reboiler section of an absorber-stripper system utilizing a thermally stable solvent in order to maximize high temperature energy savings.

Six PZ-based solvent blends were investigated for their thermal stability. All blends are compared to 8 m PZ as the baseline case of a highly stable solvent. In the blends tested, the total alkalinity of the solvent was maintained at 8 m, while PZ was replaced with methylated PZ molecules (MPZ or DMPZ). Blend compositions are indicated as the concentration of PZ/MPZ/DMPZ, all in units of m. For example, one two-component blend of 4 m PZ/4 m MPZ, or 4/4/0, was investigated. Five three-component blends (5/2/1, 5/2.5/0.5, 5/1.5/1.5, 3.9/3/9/0.2, and 3.75/3.75/0.5) were also investigated.
The overall rate of thermal degradation was assessed using a first order rate constant of amine loss, \(k_1 \), as described in detail previously [13, 27]. For comparing the blends, the rate was determined based on the total amine loss as a sum of PZ, MPZ and DMPZ rather than the rate of loss of the individual amine species. This was done to allow an overall comparison of the blends on a similar basis. The \(k_1 \) values for thermal degradation at 150°C of the 8 m PZ and the blends are compared in Table 6. The \(k_1 \) values of the blends vary from \(8.6 \times 10^{-9} \) to \(7.5 \times 10^{-8} \) s\(^{-1}\) and are substantially less than the comparable value for 7 m MEA with 0.4 mol CO\(_2\)/mol alkalinity degraded at 150°C of \(8.3 \times 10^{-7} \) s\(^{-1}\) [4].

Blending of PZ with MPZ and DMPZ also reduces solvent stability as shown with the high \(k_1 \) values for all blends studied. The changes in the rate constant are small for most of the blends with the exception of the 5/1.5/1.5 solvent, so the slight increase in degradation may be balanced by the improvement in solid solubility.

2.3.2 Thermal Equilibrium of PZ, MPZ and DMPZ

A thermal equilibrium was found to establish itself in the presence of methylated PZ. In the degradation of 8 m MPZ, PZ and DMPZ were generated as products through a \(S_N^2 \)-type substitution or arm-switching reaction. Observations of this system indicate it tends toward an equilibrium set of concentrations as the species interconvert to produce a solvent that is thermally stable at its equilibrium concentrations. The thermal equilibrium established between PZ, MPZ, and DMPZ was studied in the thermal degradation experiments performed at 150°C described in the previous section. At this temperature, some degradation was expected to occur, but the interconversion of PZ, MPZ and DMPZ was assumed to occur more rapidly than degradation processes based on the slow degradation rates discussed in the previous section.

The expected equilibrium reaction of MPZ is as follows, where the brackets indicate the concentration of the given species in units of mmol/kg (Eq. 8). The equilibrium constant, \(K_{eq} \), of Equation (8) can then be calculated (Eq. 9):

\[
2\text{[MPZ]} \rightleftharpoons \text{[PZ]} + \text{[DMPZ]}
\]

\[
K_{eq} = \frac{[\text{PZ}][\text{DMPZ}]}{[\text{MPZ}]^2}
\]

The goal of this \(K_{eq} \) analysis is to determine the concentrations of the three amine species in equilibrium at 150°C. These concentrations would be what were expected to be stable in a system with a reboiler temperature of 150°C. The \(K_{eq} \) values for the thermal equilibrium of PZ, MPZ, and DMPZ are shown in Figure 7. For each blend, the \(K_{eq} \) was calculated at each time point according to Equation (9) and plotted against degradation time.

All of the experiments, including those with limited data, were found to tend toward a \(K_{eq} \) value of 0.27-0.30, indicating the equilibrium concentrations of amine expected at 150°C. The experiments containing 3.9/3.9/0.2 and 3.75/3.75/0.5 demonstrate this tendency toward a \(K_{eq} \) of 0.29. Experiments with initial amine concentrations far from equilibrium, such as the 5/1.5/1.5 blend, demonstrated a higher thermal degradation rate as the amines reacted toward equilibrium, as shown in Table 6.

Degradation of PZ alone will not yield these results as MPZ and DMPZ are only minor products [13]. However, when a blend begins with at least some N-methylated PZ (i.e., MPZ or DMPZ), these methyl groups can easily

<table>
<thead>
<tr>
<th>PZ/MPZ/DMPZ concentration (m)</th>
<th>(k_1 \times 10^{-9}) at 150°C (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/8/0</td>
<td>8.6</td>
</tr>
<tr>
<td>3.75/3.75/0.5</td>
<td>10.3</td>
</tr>
<tr>
<td>3.9/3.9/0.2</td>
<td>8.4</td>
</tr>
<tr>
<td>4/4/0</td>
<td>13.9</td>
</tr>
<tr>
<td>5/1.5/1.5</td>
<td>75.3</td>
</tr>
<tr>
<td>5/2/1</td>
<td>13.7</td>
</tr>
<tr>
<td>5/2.5/0.5</td>
<td>14.4</td>
</tr>
<tr>
<td>8 m PZ</td>
<td>6.1</td>
</tr>
<tr>
<td>7 m MEA</td>
<td>828</td>
</tr>
</tbody>
</table>

![Figure 7](https://example.com/f7.png)

\(K_{eq} \) for PZ + MPZ + DMPZ solutions thermally degraded at 150°C (\(\alpha = 0.3 \)). Labels indicate the concentrations of PZ, MPZ, and DMPZ in solution in molal (m).
undergo a straightforward nucleophilic attack and disproportionation, resulting in switching of the methyl groups between molecules. Overall, the data suggest that any system starting with MPZ will tend toward a K_{eq} of 0.28 to 0.30 at 150°C.

2.4 Overall Comparison of Blends

A comparison of the important parameters for CO$_2$ capture solvents is presented in Table 7 for 7 m MEA, 8 m PZ, and 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ. The CO$_2$ loading range when the solvent is completely soluble at 20°C is shown based on solubility data.

The improved solubility of both MEA and the blend is a strong advantage over 8 m PZ. The CO$_2$ capacity was calculated for each system as described in Section 2.2.2 based on CO$_2$ solubility at P_{CO_2} of 0.5 and 5 kPa. The blend and 8 m PZ have approximately double the CO$_2$ capacity as MEA, an important advantage. The average k_{g}^{*}avg, based on a log-mean flux and log-mean driving force across a typical absorber design, as described in detail previously, is compared at 40°C [26]. Both PZ and the blend have k_{g}^{*}avg values double that of MEA.

Empirical regressions for the ΔH_{abs} are shown for each solvent based on CO$_2$ solubility regressions developed for MEA and PZ previously or for the blend as described in this manuscript [20]. The ΔH_{abs} was calculated from the empirical regressions at a midpoint in the expected loading range for each amine system. The midpoint was determined to be at a P_{CO_2} of 1.5 kPa, which corresponded to CO$_2$ loadings of 0.49, 0.35, and 0.28 mol CO$_2$/mol alkalinity for the MEA, PZ and blended systems, respectively. Error in the calculation of this value was assessed based on the confidence of each regressed coefficient. The larger ΔH_{abs} for the blend over PZ is a crucial advantage that will reduce overall energy performance.

Volatility was reported as the overall amine volatility of each solvent at 40°C at the expected lean loading as this should correspond to the top of the absorber in a real system. For the blend, this is a sum of the partial pressure of PZ, MPZ and DMPZ at this condition. The volatility of the blend is significantly higher than the two baseline amines. Implementation of this amine system will require an adequately designed water wash system to avoid amine losses from the absorber.

The thermal stability of each solvent is expressed as the k_1 for thermal degradation at 150°C. Data for MEA, PZ and the blend were obtained at 0.4, 0.3 and 0.3 mol CO$_2$/mol alkalinity, respectively. The reported value for the blend is based on total amine loss from PZ, MPZ and DMPZ. Both PZ and the blend are significantly more thermally stable than MEA as demonstrated by the large k_1 value of MEA.

TABLE 7

<table>
<thead>
<tr>
<th>Solvent</th>
<th>7 m MEA</th>
<th>8 m PZ</th>
<th>3.75 m PZ/3.75 m MPZ/0.5 m DMPZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility range at 20°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mol CO$_2$/mol alkalinity)</td>
<td>0 to max</td>
<td>0.25-0.45</td>
<td>0.18 to max</td>
</tr>
<tr>
<td>Operating loading range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mol CO$_2$/mol alkalinity)</td>
<td>0.45-0.55</td>
<td>0.31-0.39</td>
<td>0.23-0.32</td>
</tr>
<tr>
<td>CO$_2$ capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mol/kg amine + water)</td>
<td>0.47</td>
<td>0.79</td>
<td>0.88</td>
</tr>
<tr>
<td>k_{g}^{*}avg (40°C) (mol/s.Pa.m2)</td>
<td>4.3×10^{-7}</td>
<td>8.5×10^{-7}</td>
<td>8.5×10^{-7}</td>
</tr>
<tr>
<td>ΔH_{abs} (kJ/mol CO$_2$)</td>
<td>72 ± 4</td>
<td>66 ± 2</td>
<td>70 ± 1</td>
</tr>
<tr>
<td>P_{amine} at lean ldg and 40°C (Pa)</td>
<td>2.7</td>
<td>0.8</td>
<td>81.5</td>
</tr>
<tr>
<td>Thermal degradation, $k_1 \times 10^{-9}$ at 150°C (s$^{-1}$)</td>
<td>828</td>
<td>6.1</td>
<td>10.3</td>
</tr>
</tbody>
</table>

CONCLUSIONS

A blend of PZ, MPZ and DMPZ is an example of a new solvent design based on the thermal equilibrium of multiple amines useful for CO$_2$ capture. Blends of this nature reach a thermal equilibrium at reboiler temperature where the overall thermal degradation rate is low while multiple species exist that are valuable to the CO$_2$ capture process. 3.75 m PZ/3.75 m MPZ/0.5 m DMPZ has been fully evaluated for this application.

In comparison with 8 m PZ, this blend was found to have advantageous solid solubility and ΔH_{abs}, with approximately the same behavior in terms of CO$_2$.
capacity, CO₂ absorption rate and thermal degradation as shown in Table 7. Disadvantages of the blend include mildly increased viscosity and substantially greater amine volatility as DMPZ. Both of these properties are important to the optimized design of a CO₂ capture system and would need to be addressed. A carefully designed water wash system would be needed to address the amine volatility. As with PZ, the blend was found to have significantly better CO₂ capacity, CO₂ absorption rates and thermal stability compared to 7 m MEA.

ACKNOWLEDGMENTS

The Luminant Carbon Management Program provided support for this work.

REFERENCES