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Résumé — Erreurs résultant des effets d'échelle et de la simplification des processus dans le calage
de modèles à partir de données sismiques — Les données sismiques fournies par la méthode time-
lapse (4D) renvoient des informations spatiales et dynamiques sur les modifications des propriétés du
fluide du réservoir et peuvent être utilisées pour imposer des modèles de simulation de flux, améliorant
ainsi la confiance en la caractérisation du réservoir et son comportement prévu.

Pour régler cette question, nous avons élaboré une méthode d’intégration quantitative des données 
sismiques en 4D dans un flux de travail se calant automatiquement sur l’historique. Les simulations de
flux correctement paramétrées sont converties en prédictions de signatures 4D par un rééchelonnement
adapté et à transformation pétroélastique avant qu’une marge ne soit calculée par comparaison avec des
données observées. Les paramètres du modèle sont ensuite mis à jour grâce à la méthode d’inversion 
stochastique quasi-globale.

Ce processus est influencé par des erreurs d’échelle et de dépendance du modèle. Les simulations de flux
sont souvent créées de façon à ce que les ressources informatiques soient optimisées au détriment du
degré de précision. Afin d’accélérer les simulations, une certaine augmentation de la résolution est néces-
saire pour capturer les propriétés des flux biphasiques, telle que la perméabilité, mais aussi afin de
représenter l’hétérogénéité géologique. Cette augmentation de résolution peut être simplifiée à l’extrême
ou ignorée.

De plus, des simplifications des processus de flux peuvent être réalisées, par exemple en utilisant des
méthodes de rationalisation. Enfin, la transformation pétroélastique contribue aux erreurs de modèle du
fait de suppositions en rapport avec les distributions de saturation, et un rééchelonnement est nécessaire
car les données sismiques modélisées et observées sont obtenues pour des volumes différents.

Nous présentons une analyse des erreurs de modèle en utilisant un modèle géologique synthétique basé
sur le champ Schiehallion. Nous démontrons que l’erreur de modèle dépend des paramètres physiques de
la roche ainsi que du modèle géologique sous jacent mais que, dans ce cas, cela dépend particulièrement
des effets de saturation. En réalité, l’erreur de modèle serait négligeable si la signature 4D était dominée
par des modifications de pression. Nous décrivons comment l’erreur de modèle affecte le calage his-
torique en influant sur les résultats par rapport à une vérité connue. Nous comparons l’effet de l’erreur de
modèle par rapport aux erreurs de données observées. Enfin, nous décrivons comment l’erreur de modèle
est réglée dans le calcul de marge afin d’améliorer le processus de calage historique et de réduire l’effet
de distorsion.
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INTRODUCTION

Reservoir management requires tools such as simulation
models to predict asset behaviour. History matching is often
employed to alter these models so that they compare
favourably to observed well rates and pressures. This well
information is obtained at discrete locations, and thus lacks
the areal coverage necessary to accurately constrain dynamic
reservoir parameters such as permeability and the location
and effect of faults. Time-lapse seismic captures pressure and
saturation changes by their effect on seismic impedances or
equivalent attributes. This information, missing in conven-
tional approaches, can be included in seismic history match-
ing improving estimates of the reservoir model parameters. 

We have developed such a method (Fig. 1) that is auto-
mated, based on a multiple model, quasi-global stochastic
approach and has been applied to the Schiehallion field,
located to the west of the Shetland Islands on the United
Kingdom Continental Shelf (Stephen et al., 2005b; Stephen
and MacBeth, 2006a; Stephen and MacBeth, 2006b; Stephen
and MacBeth 2006c; Stephen, 2006; Stephen et al., 2006).
Our method improves on the classical workflow, where the
engineer manually adjusts parameters in the simulation
model. It also improves on gradient-based methods, such as
Steepest Descent, Gauss-Newton and Levenberg-Marquardt
algorithms (e.g. Lépine et al., 1999; Dong and Oliver; 2005;
Gosselin et al., 2003; Mezghani et al., 2004), which are good

at finding local misfit minima but can fail to find the global
minimum. Our approach is also faster than stochastic 
methods such as genetic algorithms and simulated annealing,
which often require more simulations and may have slower
convergence rates. Similarly our method is more efficient at
searching the parameter space than other probabilistic 
methods such as the Gradual Deformation (Hu, 2000) or
Regional Probability Perturbation (Hoffman and Caers,
2005) methods. Finally, multiple models are generated
enabling posterior uncertainty analysis in a Bayesian frame-
work (e.g. Stephen and MacBeth, 2006a-c). 

Our approach is based upon the prediction of well behav-
iour and also changes in seismic attributes during the produc-
tion process. For the purpose of this paper, we shall refer to
this prediction process as ‘the model’ which itself consists of
several modelling steps. The first of these involves the gener-
ation of models that represent the geological architecture of
the reservoir. These are commonly referred to as geo-models
in the literature. Following any necessary upscaling, geo-
models may be used as input for flow simulations. This sec-
ond modelling step can be used to predict fluid changes
under production conditions and both geo-modelling and
flow simulation are standard practice in the oil and gas indus-
try. A third modelling step uses the results of the simulations
as input into a petro-elastic transform to predict changes in
the petro-elastic properties of the reservoir. We compare
these to equivalent properties from the observed seismic

Abstract — Scale and Process Dependent Model Errors in Seismic History Matching — Time-Lapse
(4D) seismic data offers spatial and dynamic information about changes in reservoir fluid properties and
can be used to constrain flow simulation models thereby improving confidence in the reservoir charac-
terisation and its predicted behaviour. To address this, we have developed a method of quantitatively
integrating 4D seismic data in an automated history matching workflow. Appropriately parameterised
flow simulations are converted to predictions of 4D signatures by a petro-elastic transform and suitable
rescaling before a misfit is calculated by comparison to observed data. Model parameters are then
updated using a quasi-global stochastic inversion method.

This process is affected by scale and process dependent model errors. Flow simulations are often created
such that computer resources are optimised and some level of accuracy is sacrificed. To speed up simula-
tions, some form of upscaling is required to capture two-phase flow properties such as relative 
permeability but also to represent geological heterogeneity. The upscaling may be over-simplified or
ignored. In addition, simplifications to the flow processes may be made, for example by using streamline
methods. Finally, the petro-elastic transform contributes to the model errors due to assumptions about
saturation distributions and cross-scaling is required because modelled and observed seismic are
obtained for different volumes.

We present an analysis of the above model errors that occur using a synthetic geo-model based on a
North Sea reservoir. We show that the model error depends on the rock physics parameters as well as the
underlying geo-model. When the 4D signature is dominated by pressure effects, the model error is 
negligible in our case. We describe how the model error affects the history matching process due to 
biasing. The latter results in a best set of model parameters which may be different from that obtained by
upscaling while the uncertainty estimator is also changed. We compare the effect of the model error to
other errors such as observed data errors. Finally, we describe how the model error is addressed in the
misfit calculation to improve the history matching process and reduce the biasing effect.
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although they could be used as input into seismic modelling
(e.g. MacBeth, et al. 2005). Our model therefore combines
geo-modelling, flow simulation and the petro-elastic trans-
form with their associated errors. 

To date, we have ignored the influence of model errors in
the history matching process. These can be important, how-
ever, as they can affect the convergence rate, lead us to incor-
rect models or alter the posterior uncertainty estimate. The
errors arise because we make simplifications in the simula-
tion process as discussed in Christie et al. (2005). One such
simplification occurs in the physical processes that we
model. For example the complex pore scale behaviour is rep-
resented by continuum equations and fluid interactions are
captured by relative permeability and capillary pressure func-
tions. We also convert those equations to a simplified form
by discritisation via finite difference methods. Our equations
become less accurate the more coarsely we discretise but we
also change our representation of the finer detail in both para-
metric form and in the physics we hope to capture. This
applies to both flow simulation and the conversion of simula-
tion results into predicted seismic (e.g. Stephen et al., 2005).

The purpose of this paper is to calibrate the scale depen-
dence of the model errors to determine how we may remove
or reduce their effect. We do so by first assuming that the
model is accurate at some fine scale and derive synthetic pre-
dictions of the reservoir behaviour. Our model is analogous
to the Schiehallion field model that we studied previously.
We then generate appropriate coarse scale models and
attempt to modify these using our history matching method
so that predictions compare to those made at the fine scale.
We show that the model error affects our ability to history
match to a degree that is equivalent to errors that may be 

present in the data. We can remove the impact of the model
errors, however, with effective calibration in the misfit calcu-
lation similar to O’Sullivan (2004). 

1 METHOD

Our approach may be summarised as two separate steps com-
mon to all iterative history matching methods. First we take a
set of models where the p-th model is parameterised by the
vector mp and calculate a misfit, J(mp) for each model. Then
we use a method of choosing a new set of mp based on the
existing misfits, in this case the Neighbourhood Algorithm
(Sambridge, 1999a). We then iterate through the two steps
until we converge on a set of good models.

The first step is quite complex and involves several model-
ling steps and so we have broken up the description appropri-
ately (Fig. 1). The Neighbourhood Algorithm is independent of
these steps and we give a brief summary here, although further
details can be found elsewhere (Sambridge, 1999a). We begin
the process creating an initial ensemble of models by sampling
the parameter space either randomly or deterministically. 

1.1 Generating Multiple Simulations

For the p-th parameter vector, mp, a new geo-model is
derived by modifying a base case, created using sequential
Gaussian simulation using the GSLIB package (Deutsch and
Journel, 1992). In this paper we only vary the permeabilities
in the geo- model using the Pilot Point Method with Kriging
(e.g. de Marseily et al., 1984). The vector, mp, is therefore a
set of permeability multipliers applied to the pilot points, 
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Schematic of the iterative automatic history matching process where many models are generated per iteration and their misfits are used to
pick new parameter values.
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specific cells in the geo-model. Kriging is used as a form of
interpolation to change permeability multipliers between pilot
points. The variogram used in the Kriging has a range equiva-
lent to the separation of the pilot points. In the Schiehallion
field study (e.g. Stephen and MacBeth., 2006; Stephen et al.,
in Press) we modified additional parameters including the
Net:Gross distribution, to match pre-production acoustic
impedance, as well as fault transmissibilities and the petro-
elastic transform parameters when matching dynamic data. 

1.2 Forward Modeling: from Flow Simulation Results
to Seismic Impedances 

The observed seismic is compared to the predicted imped-
ance attributes, which are obtained using a petro-elastic trans-
form (e.g. MacBeth et al., 2005) and fluid saturations and
pressures from the simulations. For each simulation cell, we
calculate the dry bulk modulus using (MacBeth, 2004):

(1)

where the superscript r identifies rock type (sand or shale), the
parameters κinf, Eκ and Pκ are determined from lab 
measurements or by history matching (Stephen and MacBeth,
2006c), and represents the dry bulk modulus at Standard
Temperature and Pressure, the excess compliance present in the
rock as a result of geological or mechanical processes, and the
stress sensitivity respectively. Peff is the difference between the
overburden pressure and the pore pressure. Here we assume
that the effective stress equals the differential. The shear modu-
lus, μr, has the same form with equivalent parameters.

We then use Gassmann’s equation (1951) to get the 
saturated bulk modulus for each lithofacies within a cell:

(2)

where φ is the porosity, κgr is the bulk modulus of the 
mineral, α = (1 – κr

dry/κgr). κf is the fluid bulk modulus
given by the saturation weighted harmonic average of the
individual phase bulk moduli (e.g. Domenico, 1976) from: 

(3)

where Sw, So and Sg are the water, oil and gas saturations
respectively and κw, κo and κg are the water, oil and gas 
moduli respectively and obtained using Batzle and Wang
(1992). 

The P-wave moduli for sand and shale are obtained from
Mr = κr

sat + 4 μr/3 (shale is assumed to consist of dry frame
only and the shear modulus is unaffected by saturation) and
the value for each cell, Mcell, is obtained from the harmonic

mean of the sand and shale values, weighted by the respec-
tive fractional volumes via the Net:Gross. This is valid for
vertical propagation in a layered medium (Backus, 1962).
Using this, the impedance for a column of cells in the simula-
tion model is calculated:

(4)

where ρ is the bulk density of the cell obtained by averaging
the densities of the rock frame and the fluid densities. The
brackets, “< >”, indicate a vertical volume weighted average
over the reservoir interval. This approach is valid for reser-
voir beds that are less than one tenth of the seismic wave-
length thick and units of around one quarter wavelength
thick. By averaging over the reservoir interval in this way,
we get a map of predicted impedance with areal resolution at
the scale of the simulation grid.

For the Schiehallion field study, we calculated 4D 
attributes from the observed data by integrating over the
reservoir interval. In the synthetic study presented in this
paper, we synthesise the observed data by using impedances
calculated from a fine grid flow simulation model with cells

Figure 2

Comparison of the coarse and fine grids used in our study.
Thick grey lines indicate the coarse cells while large circles
show the location at which the impedances are predicted.
Equation 5 is used to interpolate the impedances to obtain
values at the small black circles, i.e. where the observed seis-
mic would normally be measured. Broken and solid arrows
indicate the principal directions of the coarse (simulation)
and fine (seismic) grids respectively.
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measuring 20 × 20 × 1.2 m. During history matching we run
simulations on a coarse scale grid measuring 100 × 100 × 6 m.
The predicted impedance is obtained at a coarser scale 
compared to what we observe, therefore. To enable compari-
son we must either upscale the observed data or downscale
the predicted impedances. We prefer to keep our observed
data as intact as possible and interpolate the predicted seismic
from (Fig. 2):

(5)

where indices I and J are the x and y indices on the simula-
tion grid and i and j are equivalent for the finer seismic grid,

is obtained from Equation 4 and wijIJ = exp(–β(|rIJ – rij|)
and r is the position vector of the centre of the cell. We found
that β = 0.05 m-1 gave the best results in our field study, 
minimising the representivity error. 

The same process was applied in the Schiehallion field
study (Stephen et al., 2005 onwards) except that there, the
observed and predicted seismic data grids were aligned at 
45 degrees to each other whereas here they are parallel. In
that study, the bin size of the observed seismic was 12.5 m.

1.3 Evaluate Misfit

A single misfit objective function is obtained for each model
incorporating a comparison between observed and predicted
production and seismic data. For each variable being com-
pared we use the following equation (Tarantola, 1987):

(6)

where the xi is the i-th data vector being compared, with
superscript o or m for observed or modelled respectively, and

is the covariance matrix of xi and is the sum of covariance
matrices of the observed and model errors, and 

respectively.
The total misfit per model, J, is then the sum of misfits for

each variable:

(7)

1.4 Error Analysis

We can split the observed and modelled variables (e.g.
Glimm et al, 2004) into:

(8.1)

(8.2)

where xi
t is the true value of the variable, and εi is the error

and superscripts o, m and p correspond to the error of the
observed data, the model error and parameter error. We aim
to reduce the parameter error to zero by history matching. 

Seismic attributes contain errors from a number of sources
including repeatability of the acquisition components, cross-
equalisation, tuning, wave interferences, and time integration
which are difficult to assess. In the Schiehallion field
(Stephen et al., 2005b, etc.), we determined the error by 
calculating the covariance matrix, directly having calcu-
lated εi

o using a Weiner band pass filter (Press et al., 1998) to
identify the signal. In this study we use the noise information
from that field study to perturb the synthetic impedance so
that we can analyse the relative impact of the errors. We also
combine data conversion errors such that they are not strictly
related to measurements.

In general in reservoir engineering, we perform simula-
tions using the finite difference approximation of the flow
equations together with a discretised rock volume and this
approach inevitably introduces some errors. These exist no
matter what scale we simulate at although we generally
expect that they are reduced as we refine the simulation grid.
The simulation model is often based on a finer grid geo-
model which has been upgridded and upscaled. Parametric
errors may be generated if we upscale the original geo-model
incorrectly so that we fail to represent sub-grid flow properly
(e.g. Christie et al., 2001). We also get numerical dispersion
(spreading of the simulated flood front) if we use relative
permeability and capillary pressure curves measured at the
wrong scale (Kyte and Berry, 1975) or, alternatively, other
model errors appear if we upscale these functions incorrectly
(Barker and Dupouy, 1999). 

Another source of error may arise when we calculate the
impedances. Domenico, (1976) observed the saturation rela-
tionship in Equation 3. Researchers have since pointed to the
scale dependence of this equation (e.g. Knight et al., 1996). If
we apply it to large scales (i.e. large grid cells) then the seis-
mic induced pressure wave is not fully equilibrated over the
sample volume. We can estimate the maximum cell size
from the critical length, λd, (e.g. Mavko and Mukerji, 1998)
derived as: 

(9)

where k is the permeability, F is the seismic frequency, μ, is
the viscosity of phase, f. This critical length is typically of the
order of a metre (Knight et al., 1996) at low frequencies. The
fine grid cells that we consider are therefore in the range
where we may apply Equation 3 while our coarse cells are
not. The “patchy” equation (κf is then the saturation weighted
arithmetic average of phase moduli) is recognised as an
upper limit for the fluid modulus but it requires that fluids are
segregated and may not be fully applicable for our coarse
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model. Sengupta and Mavko (1998) have shown that seismic
velocities, upscaled from small scale simulations, are closer
to the uniform saturation case than patchy. We therefore pre-
fer to use Equation 3 at both scales and calibrate the differ-
ences as part of the error.

Finally, the interpolation of predicted impedances down to
the fine grid also adds to the model error. Sharp transitions of
the fine grid impedances, which may be due to saturation
changes at the waterfront or geological variation, cannot be
captured accurately. The covariance matrices of the model
errors are then obtained from εi

m.  
We calibrate errors by modelling at two scales similar to

O’Sullivan, 2004. If our fine grid model is reasonably 
accurate (xi

t ≈ xi
fg, the fine grid result), then we can write the

model error as the difference of fine and coarse grid simula-
tion results.

(10)

The scale change error may consist of a constant system-
atic term, a parameter related term and a term related to the
geostatistical realisation of the geo-model. For this paper we
will ignore the parametric contribution, which may occur as
different parameter combinations shift the flood front, for
example. To first order approximation, we can then use the
mean error over a number of realisations to modify the misfit
function:

(11)

In other studies the parametric effect on the error was 
calibrated (e.g. O’Sullivan, 2004; Glimm et al, 2004) and a
similar approach could be applied here if necessary. 

1.5 Sampling from the Parameter Distribution

For a given ensemble of models, we use the Neighbourhood
Algorithm together with existing parameter vectors and mis-
fits to resample the parameter space. Resampling takes place
by dividing the parameter space into Voronoi cells. The best
nr models are selected and ns/nr new models are randomly
chosen in each Voronoi cell in this sub-sample. Large values
of ns and nr improve the chances of avoiding local minima
and should be increased with the dimension of the parameter
space (Sambridge, 2001).

2 RESULTS

2.1 Quantifying the Scale Error

In this section we quantify the errors that arise when we use
our coarse scale geo-model as input to the simulation process
and comparing it to a fine scale result assumed to be the truth. 

We generate a fine grid geo-model (Fig. 3a) by distribut-
ing Net:Gross and  permeability (horizontally, it is isotropic
and independent of Net:Gross). Vertical permeability is a
function of Net:Gross and porosity of the sand is uniform, as
in our Schiehallion field study (Stephen et al., 2006a).
Properties are distributed using sequential Gaussian simula-
tion using GSLIB (Deutsch and Journel, 1992). We generate
multiple realisations of the permeability with values at the
wells fixed from the first realisation. We fix the Net:Gross
assuming that it has been constrained by 3D seismic. Fine
grid geo-models are created with 100 × 100 × 20 cells each
measuring 20 × 20 × 1.2 m. We use the Kirchoff option in
Schlumberger’s Pseudo program (Eclipse Manual, 2006) to
upscale by a factor of 5 × 5 × 5. The resulting coarse grid
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Example Net:Gross a) fine grid geo-model and b) upscaled equivalent. The fine grid geo-model measures 20 × 20 × 1.2 m while the upscaled
grid is 100 × 100 × 6 m.
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transmissibilities should be used in the coarse grid simulation
model rather than permeabilities, which are merely estimated
in this method. For our models the permeability estimate is
very good, however, and we use that here. Simple volume
averaging is used to obtain the coarse grid Net:Gross 
(Fig. 3b).

TABLE 1

Default petro-elastic transform parameters for the dry bulk modulus 
in Equation 1, obtained from history matching (Stephen et al., 2006c).

Subscript r denotes sand or shale which have the same parameter values
unless otherwise stated

Symbol Value

κr
inf 9.78 GPa

Er
k 1.0

Pr
k sand 17.1 MPa

Pr
k shale 1.45 MPa

μr
inf 6.28 GPa

Er
μ 1.0

Pμ
rsand 17.1 MPa

Pμ
shale 1.45 MPa

TABLE 2

Typical petro-elastic transform parameters for Gassman’s Equation, 2 
and the saturation Equation 3. The fluid bulk moduli are functions 

of pressure, temperature etc. and full details of the calculation 
can be found in Soldo (2005), which follows Batzle and Wang (1992)

Symbol Value

κgr 37 GPa
κw 2.58 GPa
κo 1.18 GPa
κg 0.035 GPa

Following two-phase simulations (Eclipse Manual, 2006),
the petro-elastic transform is used with the parameters in
Tables 1 and 2 to calculate maps of impedance for each
model at both scales. The coarse grid impedances are interpo-
lated so that comparison can be made at the fine scale.
Figure 4 shows the impedance change after one year of pro-
duction for fine and coarse scale models. The impedance is
reduced around the injector due to pore pressure increase but
increases as water invades the pore space, thereby stiffening
the medium. Qualitatively, the match is quite good although
some fine grid details are lost in the coarse grid model.
Figure 5a shows a cross plot of the impedance changes
shown in Figure 4. Most of the impedances lie on the y = x
line and the error appears at the edge of the waterfront
(Fig. 5b) where the saturation changes sharply. Impedance
changes relative to the base line are dominated by the pres-
sure change and the fractional error is relatively small 
(Fig. 6a). The fractional error increases for differences of
monitor surveys, however (Fig. 6b) when the flow rate
remains almost constant and so pressures changes are small.
The impact of the error at the waterfront is more apparent.
The scale error appears to be predominantly a function of the
saturations. When we apply a saturation dominated petro-
elastic transform (Eκ = 0 and fluid moduli are independent of
pressure) at both scales we obtain a similar result (Fig. 7a)
but when we make the stress sensitivity of the dry frame
quite large (Pκ from MacBeth, 2004), the apparent scale 
differences are quite small (Fig. 7b). 

To calibrate the error, we run a number of simulations
with different realisations of the fine grid geo-model. Each
geo-model is upscaled and the impedance error between the
coarse and fine scale is calculated. Figure 8 shows the mean
model error for impedance differences calculated over the
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Figure 5

Impedance differences (pre-production minus first year) from Figure 4 as (a) cross-plot of fine and coarse grid and (b) map of differences.

Figure 6

Impedance differences (first minus second year) as (a) cross-plot of fine and coarse grid and (b) map of differences. 

Figure 7

Cross plots ofiImpedance differences (pre-production minus first year) for the geo-model in Figure 3 where the petro-elastic transform para-
meters have produced a response that is a) saturation dominated  and b) pressure dominated.
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first and second years of production. The error is systematic
and sizable and reflects the interpolation effect due to sharply
changing impedances at the waterfront. The mean error is
then included in the misfit calculation (Equation 11).

The contribution to the errors from the simulator can be
estimated by upscaling saturations, pressures, porosities, etc.,
from the fine grid simulation and applying these on the coarse
grid when we calculate impedances. The errors that remain
will be due to the effect of applying the saturation law
(Equation 3) and those from interpolation (Equation 5).
Figure 9a shows the average model error when we do this for
the first year of production. In Figure 9b, we take the differ-
ence between the original error and this reduced mean error to
estimate the contribution from the simulation alone. We see
that there is a sizable contribution from the simulation error,
particularly between the waterfront and the injector well.  

With a calibrated error we can then modify the misfit
function and begin history matching.

2.2 History Matching

In this section, we determine the impact of the model error on
history matching examining situations where it is absent,
ignored or is compensated for. We also compare it to the data
error to determine relative importance.

Figure 10 shows a coarse grid horizontal permeability dis-
tribution, which has been obtained by upscaling a fine grid
geo-model as in the previous section. The coarse grid geo-
model forms our base case in history matching and is modi-
fied by changing permeability multipliers at the pilot points
shown in Figure 10. The multipliers are interpolated using
Kriging with a variogram of 500 m, the separation of the 
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Average model error of impedance change calculated for six realisations of Net:Gross, porosity and permeability constrained to the same
well data as in Figure 3 for differences (a) pre-production first year and (b) first year minus second year.

Figure 9

a) As Figure 8a except that fine scale saturations, pressures etc. were upscaled to the coarse grid and then the impedances were calculated; 
b) Figures 9a subtracted from 8a to estimate the simulation error.
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Figure 10

Example permeability model for the coarse grid with pilot
points shown.

Figure 11

Misfit comparison where a coarse grid geo-model has been
modified using historal impedances from: base case coarse
grid (Case I, black), the fine grid (Case II, red), error cor-
rected fine grid (Case III, green), fine grid plus typical noise
(Case IV, yellow) and error corrected fine grid plus data error
(Case V, blue). The base case coarse grid geo-model was
obtained by upscaling from the fine grid and the solid lines
indicate the misfits of the base case for II-IV.

pilot points. We populate the initial ensemble of models by
randomly sampling a six dimensional parameter space such
that the pilot points multipliers can vary from 0.1 to 10. The
initial ensemble is independent of any knowledge of the base
case geo-model. The fine grid representation of the geo-
model is used to generate our “truth” impedances. 

We also apply synthetic data errors in Equation 11 based
on the statistics of the observed impedances from the

Schiehallion field. After suitable conversion, the field study
data error is equivalent to a standard deviation of impedance
of 0.015 g/cc km/s for each time lapse difference map.
Correlation in the field data error was negligible at the coarse
scale so we generated noise in the fine scale impedances that
was Gaussian and uncorrelated.

To estimate the effect of the model error on seismic his-
tory matching we modify the same coarse scale geo-model
by matching to truth impedances from:
– A coarse scale geo-model directly upscaled from the fine

grid realisation. This is a simple way of determining how
history matching performs in the absence of errors. The
parameter error may be reduced to zero completely in this
case (e.g. Stephen et al., 2004).

– A fine grid geo-model from which the base case geo-
model is derived by direct upscaling. The mean model
error is ignored.

– As (II) but now the mean model error from Section 2.1 is
included in Equation 11.

– As (II) but now noise is added to the fine grid observed
data to emulate noise observed in the field study (Stephen
et al., 2005). We use the data error to derive an uncorre-
lated random noise field, which is then added to the
observed impedance map. 

– As (IV) except that the mean model error is included in
Equation 11.
Figure 11 shows a comparison of the evolution of the 

misfit for each of the 5 history matching cases above. In 
Case I, the misfit declines at a log:linear rate with increasing
ensemble size and has reduced by two orders of magnitude
after 1024 models have been simulated. In Case II, the misfit
reaches a plateau due to the model error and we are close to
convergence. Note that the misfit of the base case geo-model
is greater than the global minimum misfit. When we include
the mean error in Equation 11, Case III, we remove a signifi-
cant and systematic error such that our misfit continues to
decline and convergence requires many more models. Once
again, however, the base case can be improved upon. In 
Case IV, the data error affects both convergence and the best
model in much the same was as the model error. We can cor-
rect the misfit to compensate for the error to a reasonable
degree in Case V but a plateau effect remains. In a real field,
we would not know if the model error is important without
such fine grid simulations.

We analyse the uncertainty of the parameters by convert-
ing the misfits into a Posterior Probability Density (PPD) via
Bayes Law (e.g. Stephen et al., 2006b). We can then resam-
ple the PPD using Markov Chain Monte Carlo Methods
(Sambridge, 1999b) to obtain distributions of the permeabil-
ity multipliers. Figure 12a shows the distribution when there
are no errors present. The effect of errors can be seen in
Figure 12b such that the peaks are shifted. By including the
mean model error in Equation 11, we get a result that is
closer to the zero error case (Fig. 12c).
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Figure 12

One dimensional marginals of the pilot point multipliers used
to modify the permeability distribution for a) Case I where
the coarse grid impedances are matched; b) Case II where the
fine grid impedances are matched and c) Case III where the
average model error is used in Equation 11. The numbers in
the legend correspond to the points identified in Figure 10.
The base case multipliers are unity in the base case (i.e.
truth).

We have shown that the model error affects misfit conver-
gence and is equivalent to the data error in size and effect. It
is possible to remove the bias, which improves the history
matching process and gives a better estimate of the most
likely model and its uncertainty. 

3 DISCUSSION

In this paper we have identified the scale dependent errors
that arise from the various modelling steps taken to predict
changes in seismic impedance. As we coarsen from finer to
coarser scale simulations, the waterfront becomes more
spread out. The saturations are then used in a petro-elastic
transform containing a saturation law that is inappropriate for
the scale. Finally, interpolating predictions to the measure-
ment scale creates errors of representivity. 

In this study, Figures 7 and 9 indicate that the error is
largely located at the flood front but that may not always be
the case. The saturation error can be reduced or the pressure
error increased as a function of the reservoir parameters. The
former occurs if there is a high degree of heterogeneity at the
sub-grid scale. In that case, the numerical dispersion error,
apparent from Figure 9a, may actually be comparable to 
the physical dispersion induced by the heterogeneity.
Alternatively, the relative permeability curves may have cap-
tured the effect of sub-grid heterogeneity with appropriate
upscaling. The waterfront would then be spread out naturally
as well as numerically and the coarse scale simulation will
then be closer to the truth. The saturation error is reduced
when we increase the stress sensitivity because the spatial
variation of pressure is more gradual. In cases where we have
sharp changes in permeability, such as at faults or at the edges
of high permeability zones from facies transitions, we may
still have a large model error, however. This would be the
case, particularly, if permeability transitions are not co-inci-
dent with the edges of grid cells. The coarse grid should be
defined relative to the faults before the geo-model is built and
this is often the case. It is harder to avoid intra-coarse grid
transitions of permeability during facies modelling, however.
To do so requires that the facies transitions be modelled deter-
ministically, perhaps constrained by 3D or even 4D seismic.

We calibrate the error for a simplistic case where only per-
meability is modified. The permeabilities are generated using
sequential Gaussian simulation with an assumed known
range for the variogram. In reality, this may have some
uncertainty, bounded by the size of the geo-model and the
grid cell size and the geologist’s input. We may then choose
a single realisation as a base case to be modified. It is
extremely unlikely that our modified geo-model will match
reality and so several realisations should be considered to
reduce the inherent parameteric error. In addition, the
Net:Gross variable affects the balance between saturation and
pressure effects in the petro-elastic transform such that alter-
native realisations could change the model error. We can
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constrain Net:Gross to an areal map in many cases but the
fine scale is often uncertain and an appropriate modelling
scheme is required. Again the realisation may be important.
Finally, the error may depend on the parameters of the sys-
tem that we vary during history matching. If we move a per-
meability boundary or force the waterfront to a different loca-
tion, the model error will change. O’Sullivan (2004)
produced a method of modelling and parameterising the
errors and interpolating as a function of the unknowns. A
similar scheme may be necessary in general.

The error in our models has significant impact on the 
history matching result and is unavoidable without seriously
increasing the detail that we must consider, which in turn
would reduce our ability to search the parameter space suffi-
ciently. We can accept the error provided that we that we
compensate for it in the misfit calculation so that we have a
better measure of how close our predictions are to reality. We
show that it is possible to correct for the errors in the model-
ling shown here so that we find more accurate models. Of
course, the effect of the model error must be considered rela-
tive to the data error, which, if large, may dominate the his-
tory matching process. By including noise of similar magni-
tude to that observed in the Schiehallion field, we find that
we reduce our ability to find better models. If the level of
data error is much larger than we have observed, it may not
be worthwhile spending time calibrating the model error.

CONCLUSIONS

• Scale dependent simulation and petro-elastic transforma-
tion errors have been identified in seismic history match-
ing and are of equivalent size.

• The model error produces a non-zero minimum misfit and
affects the accuracy of history matching.

• We can calibrate the error and reduce its effect on history
matching.

• The errors dominate at sharp changes in the impedance
field, either at the saturation front or at faults but satura-
tion errors are apparent elsewhere.

• If faults or other permeability changes are absent, a pres-
sure dominated seismic response will have negligible
model error.
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