X-Ray Absorption Spectroscopy and Anomalous Wide Angle X-Ray Scattering: Two Basic Tools in the Analysis of Heterogeneous Catalysts

D. Bazin\(^1\), J. Lynch\(^2\) and M. Ramos-Fernandez\(^2\)

\(^1\) LURE, Université Paris XI, Bât. 209D, 91898, Orsay - France
\(^2\) Institut français du pétrole, Physics and Analysis Division, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France

e-mail: john.lynch@ifp.fr - dominique.bazin@lure.u-psud.fr - martam.ramos@yahoo.com

Abstract — X-Ray Absorption Spectroscopy and Anomalous Wide Angle X-Ray Scattering: Two Basic Tools in the Analysis of Heterogeneous Catalysts — In the past decades, our understanding of physico-chemical processes at the atomic level in nanomaterials has been significantly improved by the emergence of synchrotron radiation related techniques. In this review paper, we describe two techniques: X-ray absorption spectroscopy (XAS) using soft and hard X-rays, and anomalous wide angle X-ray scattering (AWAXS), both of which use some of the specific properties of a synchrotron beam, in particular the wide spectral range. We focus on the numerous breakthroughs which have been achieved using these techniques in describing heterogeneous catalysts. The merits and shortcomings of each technique are discussed.
INTRODUCTION

Our understanding of heterogeneous catalysis at the atomic level is developing rapidly at the present time [1-8], this particular family of materials being implied in major environmental challenges of our modern society such as the NOx removal processes [9].

From a theoretical standpoint [10-13], many of the numerous new insights gained in this field are due to the possibility to describe in a realistic way the electronic structure of nanometer scale entities [14-17] and thus to understand both their atomic and chemical rearrangements [18, 19].

From an experimental point of view, the emergence of synchrotron radiation methods [20, 21] gives the required abilities to characterise such nanomaterials during the chemical reaction [22, 23]. The use of in situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity [24]. This research field has repeatedly attracted the attention of major industrial research groups like PSA [25], Elf [26], DSM [27], Shell [28, 29], Rhodia [30], Total [31, 32], Mobil [33], or Exxon [34].

Photon-matter interaction occurs via two fundamental channels: absorption (the energy of the photon is lost within the target) and scattering processes which can be either elastic (Thomson scattering for free electrons) or inelastic (Compton scattering). Note that the interaction of photons with nuclei is out of the X-ray range considered here (Compton scattering). Note that the interaction of photons with nuclei is out of the X-ray range considered here.

Heterogeneous catalysts, and in particular industrials catalysts present a large degree of variability in terms of composition, structure, required functions [38, 39]. They range from zeolites [40, 41], CeO2 [42], C [43], ZrO2 [44, 45] or TiO2 [46] and mixed oxides (such as Al2O3-CeO2 [47] or WO3-CeO2 [48]) to metals (Fe [49], Co [50], Cu [51], Zn [52], Nb [53], Ru [54], Pd [55, 56], Sn [57], W [58], Ir [59, 60], Pt [61, 62], Au [63]) and sulphides (Mo [64-67], Ni [68], Co [69], Nb [70]) supported by oxides.

Laboratory characterisation techniques, such as transmission electron microscopy, in situ XRd [71] or FTIR [72] contribute to a description of the solids but do not precisely show the structure of nanometer scale particles. A combination of several characterisation techniques is necessary to obtain a coherent description of these solids. In summary, if laboratory techniques constitute a starting point for analysis, modern materials studies systematically integrate synchrotron radiation related techniques [73, 74].

In this review we illustrate, through a survey of recent literature illustrated by experimental results obtained in collaborative research by the Laboratoire pour l’utilisation du rayonnement électromagnétique (LURE) and the IFP, the information given by each of the techniques. The merits and shortcomings of each are discussed.

1 SOFT X-RAY ABSORPTION SPECTROSCOPY

Soft X-ray absorption spectroscopy exploits the so-called “near-edge X-ray absorption fine structure” (NEXAFS) also known as “X-ray absorption near-edge structure” (XANES) beginning before the absorption threshold, E0, and continuing up to about 40 eV after the edge.

Soft X-ray absorption spectroscopy (for a detailed description see references [75, 76]) has proved to be a very powerful tool in different disciplines such as biology or magnetism [77] and more particularly in heterogeneous catalysis [78-80]. Recent advances in the theoretical analysis as well as in the instrumentation [81, 82] have motivated several studies dedicated to the application to heterogeneous catalysts of X-ray absorption spectroscopy at low energy [83-89].

The new approach allows experiments at the K edge of light elements e.g. carbon, nitrogen, oxygen [90, 91] or sulphur [92] and/or at the L edges of 3d transition metals [93, 94].

For the transition metals which constitute the metallic part of the catalyst, weak structures such as a shoulder are generally observed in the spectrum at the K edge (3d and 4d transition metals), whereas very fine structures are present at the L and M edges. The observation of such fine details associated with the emergence of a coherent theoretical formalism allows a more precise description of the structural and electronic characteristics of this family of materials compared to that obtained through more classical EXAFS based on hard X-ray photons. Moreover, since X-ray absorption spectra can also be collected at the K edge of light elements, the adsorption process of molecules of major interest in heterogeneous catalysis can be studied completely, seen from viewpoint of the two actors of the chemical bond. This leads to a more precise knowledge of intermediate species. For instance, adsorption of light molecules (CO, NO, O2, etc.) on metals can now be characterised by studying simultaneously the molecule itself and the metal atoms.

1.1 Experimental Set-Up and Experimental Limitations

Soft X-ray absorption spectroscopy is implemented at several synchrotron radiation centres. Among these, a new soft X-ray (50-1500 eV) beamline has been constructed at a bending magnet station at the Photon Factory in order to perform photoemission spectroscopy (PES), X-ray absorption fine structure (XAFS), and photoelectron diffraction (PED) experiments in surface chemistry [95].
At LURE, soft X-ray spectroscopy measurements dedicated to heterogeneous catalysis can be carried out on three different beamlines. Beamline “SA32”, using a focusing toroidal mirror and total electron yield detection [96, 97] is implemented on the “SACO” ring with an available energy range of 0.8 to 4 keV. A double crystal monochromator (fixed exit) made of beryl, quartz or InSb, can be used depending on the element of interest. The energy range may be limited by the composition of the crystals (as is the case for collection at the K edge of Mg and Al using beryl or quartz).

Also on SACO, the beamline “SACEMOR” [98] placed after a bending magnet is equipped with a high-resolution spherical mirror-plane grating monochromator (12 m, 200-800 eV). The monochromator resolution is about 0.15 eV for the cobalt L_{III} edge. Beam dimensions are about 0.5 mm × 0.2 mm at the sample (Fig. 1) and the pressure in the analyser chamber is directly related to the vacuum in the synchrotron ring.

The K edge spectra of light elements such as sulphur can be obtained at LURE on the D44 station (Fig. 2) of the DCI storage ring, typically running at 1.85 GeV with an average current of 300 mA and a lifetime of 200 h. X-rays are monochromatized by two Si (111) monocrystals. The incident \(I_0 \) and transmitted \(I_1 \) intensities are recorded by use of two ionisation chambers.

In some respects, soft X-ray spectroscopy offers the possibility to perform in situ experiments. However, if the temperature of the sample as well as the nature of the reactive gas can be considered as “free” parameters, this is definitely not the case of the pressure. The pressure in the sample environment during the experiment has to be compatible with the low energy of the incident photon (as well as, for emission measurements, with the energy of the photons/electrons coming from the sample). This imposes a limitation on the value of the gas pressure during the experiment of approximately \(10^{-10} \) Pa. High pressure experiments (\(p > 20 \) bar) can be carried out in a preparation chamber, the catalyst being then transferred. As we will demonstrate, this technique enables a real improvement in the knowledge of the structural evolution of the material in reaction conditions.

1.2 Nitrogen K-Edge Studies of the Adsorption of NO on Nanometer Scale Metallic Oxide Particles

The adsorption of NO on supported Pt/Al\(_2\)O\(_3\) was studied by NEXAFS at the nitrogen K edge [99]. Prior to NO adsorption, carbon K-edge and nitrogen K-edge spectra were measured on the catalyst in order to evaluate a possible contamination of the sample. The Pt/Al\(_2\)O\(_3\) catalyst was exposed to O\(_2\) gas and then to NO during 10 min at \(10^{-6} \) Pa. The absorption spectrum collected at the nitrogen K edge is shown in Figure 3. Thus, the information regarding the adsorption mode of a molecule on a real catalyst, is available.
Figure 3
Nitrogen K edge absorption spectrum collected after the adsorption of NO on a Pt/Al₂O₃ catalyst.

1.3 The Sulphur K Edge: Environment of Sulphur in Organic Compounds

Sulphur K-edge XANES provides a fingerprint of the forms of sulphur present in organic compounds [100, 101]. However, the analysis of solids containing a mixture of different types of sulphur is difficult. Kerogens may contain a large range of sulphur types such as FeS, FeS₂, organic sulphides, thiophenic sulphur, oxidised organic sulphur and sulphates [102, 103].

Waldo et al. [104] established a relationship between the white line intensity measured at the sulphur K edge and the position in energy, which can be used to determine the distribution of sulphur amongst the different possible forms. Following this approach (Fig. 4), kerogene samples have been characterised at different stages of a pyrolysis experiment. The initial broad white line around 2473 eV indicates the presence of both thiophenic and bridging sulphur content. After heating to 550 K the white line appears sharper and at higher energy (bridging sulphur bonds have been broken) and the absorption edge begins at lower energies suggesting formation of additional mineral sulphide (FeS₄). On further heating this sulphide in turn decomposes to FeS, liberating more sulphur. Thus, information on the distribution of sulphur among the different forms is available through this simple method [105].

1.4 The L Edge of 3d Elements

Preparation of the PdCo and RuCo samples has been fully described in earlier papers [106-108]. The Co L₃ edge of CoPd/SiO₂ and CoRu/SiO₂ catalysts has been followed during reduction and CO adsorption. Figure 5 shows the case for the CoPd solid. In the initial state of the bimetallic CoRu/SiO₂ catalyst, the shape of the L₃ edge shows the presence of Co₃O₄ clusters (very similar to the monometallic Co/SiO₂ case). On reduction, the Co L₃ edge is modified then, after CO adsorption, an edge spectrum corresponding to the spectra obtained for the SiCo₂O₄ reference compound is observed. It is thus clear that Co atoms are in the Co²⁺ (O₆) electronic state.

Figure 4
White line intensity measured at the sulphur K edge of kerogen sample as a function of temperature.

Figure 5
Evolution of the Co L₃ edge after in situ reduction and in situ CO adsorption.
Information regarding the structural and electronic environment of metals of a real catalyst is thus available.

2 HARD X-RAY ABSORPTION SPECTROSCOPY

For high energy X-ray photons the details of the XANES part of the absorption spectrum are less detailed, making extraction of quantitative information difficult. Important information may however be obtained on the local structure around an element from the "extended X-ray absorption fine structure" (EXAFS: from $E_0 + 40$ eV to $E_0 + 1500$ eV).

The basic model is the following: the absorption of an X-ray photon by an atom ejects a photoelectron, which is scattered by neighbours. An interference process builds up between the wave function of the outgoing electron and its scattered parts, leading to a modulation of the absorption coefficient. Far beyond the absorption edge, the electron is assumed to be free. The scattering is weak and involves only one neighbour atom (single scattering approximation).

2.1 Experimental Set-Up

As stated previously, X-ray absorption spectroscopy now constitutes a basic chemical analysis tool. Thus, each new third generation synchrotron radiation centre has developed one or several beamlines dedicated to X-ray absorption spectroscopy [109]. Often these beamlines offer the possibility either to collect a diffraction diagram at the same time [110-115] or to follow in real time a chemical reaction [116-120].

At LURE, this type of facility has been implemented on two beamlines: H10 and the dispersive experiment, both of which will be transferred on the new French synchrotron radiation centre SOLEIL [121-123].

H10 (Fig. 6) is a new beamline for materials studies [124] implemented at DCI based on the complementary aspect of different techniques specific to synchrotron radiation. X-ray diffraction (XRD) and XAS are both feasible, in the 4 to 20 keV range. XAS as well as XRD are carried out in the monochromatic mode, using a fixed exit Si (111) double crystal monochromator. Although XAS and XRD can not be measured exactly at the same time, the possibility to do both measurements consecutively without changing the set-up is an advantage when the samples are not very uniform or when it is important that the physical parameters, or the atmosphere are identical. This is often a concern when carrying out experiments on “real” materials, in particular using severe environmental conditions.

Beamline D11 (dispersive XAS, Fig. 7) is installed on the DCI positron storage ring (1.85 GeV) [125]. A dispersive bent triangular shaped crystal (Si 111) is used to focus the polychromatic X-ray beam (10^{10} photons s$^{-1}$) on to the sample. Then the beam diverges toward a position sensitive detector made of 1024 sensing elements (2500 µm high by 25 µm in width). The sample (a solid, a solution, or an electrode in the electrochemical cell) is aligned so that the focused X-ray beam, with an area of 0.2 cm2, passes through it.

2.2 The L Edge of 5d Transition Metals

It is well known that information can be obtained on the electronic state of the absorbing atom by studying the white lines or threshold spikes which appear at the $L_{II,III}$ edges of the transition metals.

The L_{III} white line intensity depends on the electronic charge transfer between either the nanometer scale metallic particle and the support or between the two metals which are present inside the cluster. An early study by Lytle et al. [126] showed the effect of chemical environment on the magnitude
of \(\text{L}_{\text{III}} \) platinum white line. Numerous studies since have used the shape of the edge as a probe to determine the chemical state of the metal [127]. These studies can be performed after [128] or during a chemical reaction [129], the spectra being collected \textit{in} or \textit{ex situ}. In Figure 8, the white line intensity for a Pt/Al\(_2\)O\(_3\) catalyst as a function of reduction temperature is converted into electron vacancy density by reference to the calculated values for platinum oxide and bulk metal. The slow decline to a value of 1 e\(^{-}\) per atom (the theoretical value for isolated Pt atoms) at 600 K is followed by a rapid reduction as metal particle formation occurs.

From a fundamental point of view, we have shown recently through \textit{ab initio} calculations [130] that a strong correlation exists between the intensity of the white line and the size of the cluster. The intensity of the white line varies with the size of the cluster. Indeed, the density of states of a nanometer scale cluster being different from that of the bulk, one would expect the intensity of the white line to be different. Thus, in contrast with numerous studies which measure electronic transfer through a comparison with the white line of the platinum foil, we show that assuming charge transfer is not necessary to explain many of the variations of the white line intensity.

\subsection*{2.3 The K Edge of 3d and 4d Transition Metals}

The XANES part of the K edge spectrum can be simulated with a linear combination of the XANES of well crystallised reference compounds. Such analysis, called PCA (principal component analysis) assumes that the absorbance in a set of spectra can be mathematically modelled as a linear sum of individual (uncorrelated) components known as factors [131, 132]. In the case of nanometer scale metallic cluster, particular attention has to be paid to the choice of reference compounds [133].

K-edge XANES spectra of most elements of the periodic table can also be simulated \textit{ab initio}. Let us consider the near edge part of the absorption spectrum of copper foil which exhibits three main features (Fig. 9) \(\alpha \) (1s to 4p transition in the 3d\(^{10} \) configuration which belongs thus to the NEXAFS part of the spectrum), \(\beta \) and \(\gamma \). This face centred cubic (fcc)
lattice is generally reproduced in the multiple scattering framework in the muffin-tin approximation by using large clusters in which the absorbing atom is always at the centre of the cluster, the surface atom contribution to the total cross section being negligible.

In the case of a 13 atoms cluster, it is essential to consider each kind of atom in the cluster since the signal from the surface and from the central atom are significantly different. Clearly, a 13 atom environment is not enough to produce the resonance (γ). A similar calculation was made for a 55 copper atom cluster (Fig. 9, curve C). The major point that has to be underscored is the presence of the features (β) and (γ) of the copper foil K edge [134]. The structure α, as expected, is also band structure dependent (and thus this feature is size dependent).

2.4 Extended X-Ray Absorption Fine Structure (EXAFS)

The relation between the modulated part $\chi(k)$ of an absorption spectrum and the structural parameters of the sample, has been established in numerous theoretical works [135, 136] and can be written as:

$$
\chi(k) = \sum_j \frac{N_j}{kR_j^2} f_j(k) \sin(2kR_j + \Phi_j(k)) \exp\left(-\frac{\Gamma(k)R_j}{k}\right) \exp(-2\sigma_j^2 k^2)
$$

where k is the wave vector of the photoelectron, j refers to the different coordination shells at a distance R_j from the absorbing atom, each shell containing N_j equivalent atoms. A Debye-Waller factor σ_j takes into account the fact that a spread in distance exists in the material and we assume that this distribution is Gaussian. Generally, the electron mean free path $\Gamma(k)$ is introduced in order to reflect the probability that the electron is inelastically scattered by its environment. The backscattering amplitude $\Phi_j(k)$ is essentially the magnitude of the transform of the scattering potential and its shape is a measure of the type of scattering atom.

A Fourier transform (FT) of the EXAFS with respect to the photoelectron wave number will show peaks at distances corresponding to the nearest neighbour atomic coordination shells. Thus, between $\chi(k)$ and the radial distribution function around the central atom, there is a simple FT relationship on which the analysis procedure is based. Conventional analysis of the EXAFS modulations contains several well-known steps [137, 138]. The most important of these are: subtraction of the background absorption and normalisation, extracting the $\chi(k)$ function, the FT of $\chi(k)$ in order to obtain a pseudo radial distribution function and finally the curve fitting procedure in k-space to obtain the structural parameters. We have illustrated the importance of multiple scattering process, in the case of the Cu foil (K edge) as well as the Pt foil (L edge). Also, it is important to underline that EXAFS is insensitive to polydispersity.

In the case of Pt clusters, it is easy to build the EXAFS modulations (Fig. 10) as well as the FT modulus (Fig. 11). These plots show that the EXAFS spectroscopy is suitable for very small clusters, the number of first neighbours varying rapidly in this size range but not for larger particles (i.e. clusters containing more than a thousand atoms) for

![Figure 10](https://example.com/fig10.png)

Variation of the EXAFS modulations versus the cluster size (dots: cluster of 13 (bold line) and 55 atoms; line: simulation of the metallic foil).

![Figure 11](https://example.com/fig11.png)

The Fourier transform modulus uncorrected for phase shift associated with clusters of 13 atoms (13Pt, bold line) and 55 atoms (55Pt, dots) of platinum compared to the modulus of a platinum foil (line).
which the FT modulus is very similar to the modulus of the platinum metallic foil. EXAFS spectroscopy is thus a structural probe, sensitive only to the local order (because of the mean free path term Γ) around one given type of atom in the sample (well defined by its X-ray absorption edge). This technique is now an invaluable tool for catalyst characterisation which can establish a link between the structural characteristics of the metallic part of the catalyst and its chemical activity.

One of the major successes of EXAFS spectroscopy has been obtained with the characterisation of the preparation steps of the catalysts. The most frequent preparation procedure includes three steps: impregnation-drying, calcination and reduction. Each has a major impact on the final structural characteristics of the material. For example, several studies have shown the importance of the choice of the precursor as well as the chlorine content during the impregnation steps [139]. Also, the temperature of calcination is determinant in the formation of heteroatomic bonds in the case of several bimetallic catalysts. Finally, the temperature and the time of reduction control the size of the metallic cluster finally generated [140-143].

Many of the bimetallic systems are easy to study due to the significant difference in the backscattering function of the different types of metal atom but this is not the case for systems such as Pt-Re [144] or Pt-Au [145] bimetallic catalysts. For these catalysts, one can use the proximity of the L edges of the two metals (Fig. 12) to follow “simultaneously” the evolution of their electronic states (Fig. 13) during reduction so as to obtain information on the formation of truly bimetallic particles [146].

3 ANOMALOUS WIDE ANGLE X-RAY SCATTERING (AWAXS)

In recent years, AWAXS experiments have been performed in several synchrotron radiation centres taking advantage of experimental improvements [147]. Various kinds of systems [148, 149] such as supported metallic clusters [150-152], Pt-Mo [153, 154], Pt-Re [155] catalysts or oxide compounds [156-159] have been investigated. For data analysis by direct comparison of calculated and experimental intensities, the first step is to set up a plausible model of the material and calculate the interatomic distances between all pairs of atoms [160]. The corresponding intensity is then calculated from the Debye formula as a function of scattering vector q and compared with the coherently scattered intensity observed experimentally. The model is refined until a satisfactory agreement is reached between the two curves.

3.1 The Associated Formalism

We recall here the basic elements associated with this technique [161-163]. AWAXS uses the energy dependence of the atomic scattering factor $f(q,E)$ near an absorption edge. This parameter is expressed in electron units as:

\[
f(q,E) = f_0(q) + f'(E) + if''(E)
\]

where q bisects the angle between the incident and scattered directions which together define the scattering plane. The function $f(q,E)$ gives the amplitude of the radiation coherently scattered by a single atom and is composed of an energy independent part $f_0(q)$ and real and imaginary energy

Figure 12
Absorption spectrum collected during an in situ reduction of a 1 weight % Pt-1 weight % Re/Al$_2$O$_3$ sample.

Figure 13
Evolution of the white line intensities of the two metals (platinum and rhenium) during the reduction of a hydrated bimetallic sample.
dependent corrections \(f'(E) \) and \(f''(E) \). The energy independent part \(f_0(q) \) is in fact the usual form factor related to the electron density of the atom:

\[
f_0(q) = 4\pi \int_0^\infty \rho(r) \left(\frac{\sin(qr)}{qr} \right) r^3 dr
\]

(3)

For forward scattering, this parameter tends towards the atomic number \(Z \) plus a relativistic correction in the case of medium and heavy elements. The real and imaginary energy dependent corrections, which originate mostly from tightly bound inner electrons, are related through the Kramers-Kronig dispersion relationship. Thus, absorption spectroscopy and anomalous diffraction are intimately related, the imaginary part being linked to the photo-absorption cross section \(\sigma(E) \):

\[
f'(E) = \frac{2}{\pi} \int_0^\infty \frac{\sigma(E)}{\epsilon^2 - E} \, d\epsilon
\]

and:

\[
f''(q,E) = \frac{E \sigma(E)}{2hcr_e}
\]

(4)

Finally, the diffraction intensity \(I(q) \) is given by the Debye scattering equation:

\[
I(q) = \sum_i \sum_j f_i(q) f_j(q) \frac{\sin(qR_{ij})}{qR_{ij}}
\]

(5)

In this equation, \(I(q) \) is the angle dependent intensity from coherent scattering, \(R_{ij} \) is the distance between atoms \(i \) and \(j \) with angle dependent atomic scattering factors \(f_i \) and \(f_j \). The sums over \(i \) and \(j \) are over all pairs of atoms.

3.2 The Analysis Procedure

To perform a Fourier analysis of the diffraction diagram, it is convenient to introduce the partial structure factor \(S_{mn}(s) \), \(s \) being the wave vector, which is related to the pair distribution function by the following relation:

\[
S_{mn}(s) = \frac{4\pi}{} \int_0^\infty \left(\rho_{mn}(r) - \rho_n \right) r \sin(sr) \, dr
\]

(6)

with:

\[
s = 4\pi \sin(\theta)/\lambda
\]

where \(\rho_{mn}(r) \) is the pair distribution function (i.e. the density of atoms of type \(n \) at a distance \(r \) from an atom of type \(m \)) and \(\rho_n \) is the average atomic density of atoms of type \(n \) in the sample. We have then:

\[
I(s) = \sum_n \sum_m x_m f_m(s) f_n^*(s) S_{mn}(s)
\]

(7)

where \(x \) is the atomic fraction.

3.3 Application to Monometallic Clusters

We now discuss the possibility of using AWAXS to study very small clusters. We consider two families of clusters. Here, calculations have been performed using calculated atomic scattering factors and neglecting thermal disorder and Compton scattering in a first approach. This last approximation is valid since, for the heavy elements considered here, Compton scattering is a small diffuse background which increases slowly when \(q \) increases.

As pointed out by Gallezot et al. [164], the different diffraction diagrams as well as their FT show Bragg diffraction peaks due to the structure and thus the nature of the network can be directly determined even for very small clusters. In the case of supported materials as it is the case generally, we have to consider the differential intensities, i.e. the difference between two diffraction diagrams taken at two energies before the edge.

In the case of monometallic clusters, the differential is similar to the diffraction intensity as shown in Equation (8):

\[
\Delta I(q) = \sum_i \sum_j \Delta f_i(q) \Delta f_j(q) \frac{\sin(qR_{ij})}{qR_{ij}}
\]

(8)

Moreover, the splitting between the Bragg peaks is extremely sensitive to the size of the clusters and thus allows a direct measure of the cluster size. This is illustrated in Figure 14 showing a difference diffraction diagram from a study of the reduction of Pd/Al\(_2\)O\(_3\). Metal loading here is 0.5% weight so that for classical X-ray diffraction the support contribution is much stronger than the signal from the Pd containing phase. By using differential intensities, the background from the support is eliminated, allowing analysis of the active phase. In Figure 14, the signal from the starting,
oxide sample has been subtracted from the final, reduced, phase so that the former appears negative (showing dips at the positions corresponding to PdO) whilst the reduced phase is positive (showing peaks at Pd metal positions). The wide oxide peaks, showing that this phase is highly dispersed, give way to sharp metal peaks indicating large particles. The sintering of Pd on reduction suggested by these results was confirmed by MET studies.

Where a distribution of sizes exists, the Debye function analysis method (simulation performed with a linear combination of ab initio calculations of diffraction diagrams) developed by Gnutzmann et al. [165] can be used and thus information regarding the size distribution is available. On this point, the absorption spectroscopy and the diffraction method can be considered as complementary methods.

Finally, we have considered monometallic clusters which display different morphologies. On Figure 15, we have plotted the diffraction intensity of nanotube clusters for which the growth axis is 100. As we can see, the width of corresponding diffraction intensity is small compared to the other diffraction peaks. An analogous is behaviour is observed if we consider nanotube with 111 growth axis (Fig. 16).

3.4 Applications to Bimetallic Clusters

Here, we consider PtCo bimetallic clusters which exhibit a nanotube morphology. As can be seen in Figure 17, different

Figure 15
Variation with particle size of the diffraction intensity of a (100) nanotube.

Figure 16
Variation with particle size of the diffraction intensity of a (111) Pt nanotube.

Figure 17
Two enantioforms of a bimetallic cluster.
distributions of the second metal can lead to the construction of two enantiomers. We used tabulated parameters for $f_0(q)$, and Table 1 gives the values of f' and f'' for each element according to Sasaki [166].

It is clear from Figure 18 that the WPSF (weighted sum of partial structure factor) at the platinum and cobalt edges are different when the distribution of the two metals (cobalt and platinum) is not a statistical distribution.

<table>
<thead>
<tr>
<th>E(eV)</th>
<th>$f'(Pt)$</th>
<th>$f''(Pt)$</th>
<th>$f'(Co)$</th>
<th>$f''(Co)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7650</td>
<td>-5.03</td>
<td>7.49</td>
<td>-4.60</td>
<td>0.48</td>
</tr>
<tr>
<td>7700</td>
<td>-5.05</td>
<td>7.41</td>
<td>-6.73</td>
<td>0.47</td>
</tr>
<tr>
<td>11450</td>
<td>-12.25</td>
<td>3.93</td>
<td>0.03</td>
<td>2.03</td>
</tr>
<tr>
<td>1154</td>
<td>-15.35</td>
<td>3.88</td>
<td>0.04</td>
<td>2.00</td>
</tr>
</tbody>
</table>

4 DISCUSSION

Let’s begin by a simple comparison between the Fourier transform of the EXAFS modulations (Fig. 11) and the radial distribution function obtained from diffraction data (Fig. 19), the two Fourier transforms being performed on a similar k range. The figures show clearly that the diffraction technique is better than absorption spectroscopy for the determination of the local order after the first shell. This is due to the fact that the low k range of the absorption spectrum is dominated by multiple scattering processes which lead to a loss of information in the high r range.

This advantage has nevertheless to be considered with care. If X-ray scattering factors have similar k dependence whatever the atomic number Z (and this is true for wide angle as well as for small angle scattering), it is definitely not the case of the X-ray absorption spectroscopy. Amplitude as well as phase scattering change significantly with atomic number for the latter and thus the chemical sensitivity of the absorption spectroscopy technique is significantly higher. Moreover, as recalled above, information on the electronic state of the absorber atom as well as on the local structure is available through ab initio calculations of the “edge” part.

The structural information obtained by AWAXS it is in many cases ambiguous, especially in the case of an overlap of the shells in the same range of distances. This restriction comes from the fact that the technique depends on n independent structural factors and it is not possible to decorrelate the $n(n+1)/2$ individual partial structure factors. In fact, there is an evident complementary between the techniques because we need to suppose the nature of the network (given by the AWAXS technique for example) and the morphology (which can be confirmed by AWAXS) to obtain the size of the particle from the different coordination numbers given by absorption spectroscopy.

For bimetallic as well as for multimetallic particles, information regarding the distribution of the two metals inside the cluster can be given by the two techniques and thus a proposed structural model has to be coherent with the different results.

Let us now consider the analysis procedure. One of the major limitations of anomalous diffraction comes from the fact that only a small k range of data is available. This is
especially the case for heterogeneous catalysts for which the elements of interest are 3d (and 5d) transition metals which have a K (L) edge around 10 KeV. This implies that the maximum value for k is thus close to $10 \, \text{Å}^{-1}$ and means that the classical analysis procedure based on the Fourier transform fails at the step of the data normalisation. We have thus to move to \textit{ab initio} calculations using the Debye equation. As shown in this report, we can apply a pseudo Scherrer formula on the differential diagram or compare directly with \textit{ab initio} calculation and this direct analysis procedure allows the size and the structure of the cluster as well as the distribution of the metals inside the particle to be obtained.

From an experimental point of view, it is clear that for low loading supported metallic clusters fewer photons are needed to obtain an absorption spectrum than to build a differential diagram from the diffraction patterns. The anomalous phenomena for wide as well as for small angle scattering is in fact based on a rather weak change in the scattering factor.

CONCLUSION

X-rays techniques related to synchrotron radiation are now widely used for structural characterisation of nanometer scale materials. More precisely, to build an accurate structural model, if laboratory methods constitute the starting point of fundamental research, building a coherent picture of electronic state and particle structure requires information based on these techniques.

From a data analysis point of view, we have shown that for the edge part of the absorption spectra, significant breakthroughs can be obtained based on simulations [133]. For EXAFS, special attention has to be paid to relate the co-ordination number to the size of the cluster or to the distribution of the different elements inside the cluster. Finally, in the case of anomalous diffraction, the Scherrer law can be extended to the differential diagram in the case of monometallic as well as bimetallic systems [73].

REFERENCES

16 Bazin, D., Mottet, C. and Treglia, G. (2000) New Opportunities to Understand Heterogeneous Catalysis Processes through Synchrotron Radiation Studies and Theoretical Calculations of Density of States: the Case of

TABLE 2

<table>
<thead>
<tr>
<th>Information obtained by the different techniques</th>
<th>XANES</th>
<th>EXAFS</th>
<th>AWAXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanometer scale monometallic clusters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic state</td>
<td>Easy</td>
<td>Difficult</td>
<td>Impossible</td>
</tr>
<tr>
<td>Structure</td>
<td>Difficult</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Size</td>
<td>Possible</td>
<td>Difficult</td>
<td>Possible</td>
</tr>
<tr>
<td>Size distribution</td>
<td>Impossible</td>
<td>Difficult</td>
<td>Difficult</td>
</tr>
<tr>
<td>Morphology</td>
<td>Impossible</td>
<td>Difficult</td>
<td>Difficult</td>
</tr>
</tbody>
</table>

| **Nanometer scale bimetallic clusters** | | | |
| Segregation inside the cluster | Possible | Easy | Difficult |
X-Ray Absorption Spectroscopy and Anomalous Wide Angle X-Ray Scattering

Epron, F., Gauthard, F. and Barbier, J. (2002) Influence of Oxidizing and Reducing Treatments on the Metal-Metal Inter-

52 Garin, F., Girard, P., Ringler, S., Maire, G. and Davias, N. (1999) Mechanistic Studies of NO(x) Reduction Reactions under Oxidative Atmosphere on Alumina Supported 1 wt% Pt and 1 wt% Pt-0.5 wt% Zn Catalysts (Part I). Applied Catalysis B: Environmental, 20, 205.

123 http://www.soleil.u-psud.fr

Final manuscript received in October 2003