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Résumé — Corrélation de l’opacité Bacharach des gaz d’échappement. Prédiction des paramètres
opérateurs qui la réduisent — Cette étude vise à déterminer les progrès à effectuer dans le contrôle de
l’opacité Bacharach de la fumée dégagée par différents types d’équipements à fuel à travers une même
cheminée. Afin de relier l’opacité Bacharach et les paramètres opérationnels de l’équipement de combus-
tion, on a construit un modèle, sur la base de l’information recueillie lors d’un fonctionnement en routine
pendant environ un an, sans expériences de laboratoire, ni altérations intentionnelles des paramètres.

Afin d’assurer la validité du modèle, on a appliqué différents outils chimiométriques aux données,
recueillies sur une période suffisamment longue. Étant donné la grande complexité des données
manipulées (paramètres d’équipement, propriétés du fuel-oil, conditions opérationnelles, etc.), le modèle
a été construit à l’aide de différents outils de complexité croissante. Par conséquent, on a d’abord mené
une analyse en composantes principales (PCA, Principal Component Analysis) sur les variables
définissant les différents types de fuel-oil utilisés, afin de supprimer leur corrélation élevée. Les résultats
de cette analyse ont été utilisés comme données dans les étapes suivantes.

À cause de la complexité élevée des paramètres impliqués, les méthodes de régression linéaire n’ont pas
fonctionné, de sorte que, pour déterminer l’influence de ces paramètres sur l’opacité Bacharach, on a dû
utiliser la méthode de régression non-linéaire ACE (Alternating Conditional Expectations).

Une fois le modèle construit, on a déterminé les paramètres gouvernant l’opacité, et le modèle a été
validé expérimentalement par l’exploration des variables modifiables in situ (combinaison du coke
Conradson et des asphaltènes dans le fuel-oil, viscosité de l’huile dans le brûleur et proportion d’oxygène
dans le four). On a vérifié que les propriétés de l’échappement de la cheminée variaient avec ces
paramètres ; les prédictions du modèle ACE ont également été confirmées. La méthodologie proposée
permet donc un contrôle effectif de la fumée dégagée par l’équipement.
Mots-clés : régression non-linéaire, alternance des expectatives conditionnelles (ACE), opacité Bacharach.

Abstract — Correlating Bacharach Opacity in Fuel Oil Exhaust. Prediction of the Operating Param-
eters that Reduce It — A study was conducted with a view to determining the steps to be taken in order to
control the Bacharach opacity of smoke released by different types of engines powered by fuel oil through
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INTRODUCTION

Heavy fuel oils are widely used to power industrial furnaces
and boilers; their burning produces gases and solid particles.
The latter are variable in nature and result from burning of the
fuel proper or from coalescence of particles in the smoke
through increasing nucleation or aggregation [1]. According
to size, they are designated soot (up to 1 µm) and cenospheres
(1-100 µm in size).

The solid fraction in fuel oil exhaust contains not only
carbonaceous particles but also a small amount of ash
(V, Na, Ca and Fe salts, silica, silicates, etc.) and the
SO3/H2SO4/SO4

2- mixture [2].

One of the parameters typically used in controlling
exhaust emissions is the blackening index. The Bacharach
opacity test, established by ASTM D-2156, is a measure
of blackening. The test involves passing a given volume
of smoke through white filter paper that is visually compared
in situ with a grey scale. The scale runs from white
(0 Bacharach unit) to black (9 Bacharach units). The result is
expressed to within 0.5 unit. There is no universal correlation
between the Bacharach opacity of smoke and its mass
content in solid particles as their size has a marked effect on
the extent to which the filter paper used in the Bacharach test
is blackened. Another influential factor is the smoke
capturing temperature, which alters retention of SO3 aerosols
and can result in slight burning of the filter paper. Spanish
legislation [3] forbids emissions with a Bacharach opacity
greater than 5 units from fuel oil burning sites.

Because of the complexity of the burning and particle
formation processes, which depends on the nature of the
fuel [4], the burning environment [5] and other design and

operational parameters of the boiler or furnace [6], the steps
to be taken with a view to correcting deviations from accept-
able opacity values are not always obvious. No clear-cut
correlation between Bacharach opacity and any fuel property
seems to have been derived; the only two papers published
on the subject lead to no firm conclusion in this respect [7, 8].

The aim of this work was to develop a chemometric
approach to determining the potential relationship of
operating variables to Bacharach opacity with a view to
constructing a statistical model of assistance in taking the
most appropriate steps to control it.

1 BACKGROUND

The non-linear, non-parametric multiple regression technique
Alternating Conditional Expectations (ACE) estimates
transformations for a response and a set of predictors [9].
These transformations may assist to the least-squares method
because if simple transformations are suggested by ACE,
they can be applied to the original variables, and the trans-
formed variables can then be used as the regression variables
in least-squares. The algorithm has so far been used to relate
structure and activity (QSAR) [10, 11], in a comparative
study of non-linear regression methods [12] and in envi-
ronmental applications [13].

ACE methodology, based on Equation (1), may be used
on both continuous or categorical data. It models a smoothed
function of the response variable as a combination of
smoothed functions of the independent variables:
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the same chimney. A statistical model was constructed to relate Bacharach opacity to the operational pa-
rameters of the burning equipment on the basis of information recorded during its routine functioning over
a period of about one year, with no laboratory experiments nor intentional alteration of such parameters.

Different chemometric tools were applied to the data recorded over a period long enough to ensure a
good model. Owing to the high complexity of the data handled (equipment parameters, fuel oil
properties, operating conditions, etc.), the model was constructed by using different tools that were tested
in order of increasing complexity. Thus, a Principal Component Analysis (PCA) was initially conducted
on the variables defining the different types of fuel oil used in order to suppress their high correlation.
The scores obtained from this analysis were used as the fuel data in the subsequent steps.

Owing to the high complexity of the parameters involved, linear regression methods were not functional,
so the non-linear regression method Alternating Conditional Expectations (ACE) had to be used instead
to determine the influence of these parameters on Bacharach opacity.

After the model was constructed, the parameters that govern opacity were determined and the model was
experimentally validated by exploring the variables that can be modified at plant level (viz. the
combination of Conradson coke and asphaltenes in the fuel, the oil viscosity at burner and the proportion
of oxygen in the furnace). Changes in these variables were found to alter the properties of the stack; also,
the predictions of the ACE model were confirmed. Consequently, the proposed methodology allows the
effective control of smoke released by the equipment.
Keywords: non-linear regression, Alternating Conditional Expectations (ACE), Bacharach opacity.
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where f(y) is the dependent variable function, tj that of the
j-th independent variable and e a term representing the error
of fit. Smoothing here has the same meaning as in methods
used to suppress oscillations (noise) superimposed on the
value of the variable of interest.

ACE functions, which are called ACE transforms, are
calculated in such a way as to minimise the sum of the
squares of the model error:

(2)

These functions are not explicitly available in the
algorithm, but rather as a series of (f(yi) – yi) or (tj(xj) – xj)
point pairs. For each transform, the number of point pairs
available coincides with that of objects used for calibration.
These points are usually plotted in a graph, from which the
shape of the transform function is apparent. Transforms are
estimated by using a smoothing procedure based on a local
linear regression performed over an interval centred at xj.
The regression line thus obtained only allows one to
estimate the function f(yi) because the line changes at the
next xj point. The sequence of all possible regression lines
leads to a non-linear function such as that of Figure 1. The
window size used in the linear regression is very important.
In ACE, the SPAN parameter is defined as the fraction of
objects—not the range for the variable—that is considered
in the local regression. The number of objects in the window
must always be an odd number not smaller than 5 so that a
point xj will be the central point. This SPAN value may be
constant or variable. In the original algorithm [9], an
automatic smoothing routine is defined, by which an
interpolation between three preset SPAN values (0.05, 0.2
and 0.5) is done to ensure the best possible local fitting. In
the program used in this work, the SPAN parameter is
automatically evaluated from 0.05 to 0.5 using a variable
increment which is calculated using a local cross-validation.
This technique may only be used if a large number of
observations is available, otherwise a value of 0.2-0.4
is advised.

A small SPAN value results in slight smoothing and,
often, in considerable non-linearity, which, however, allows
one to construct an overfitted model of little predictive
capacity. On the other hand, a large SPAN value drastically
smooths the functions and decreases non-linearity. At the
limiting value, SPAN = 1, the transforms are straight lines. A
paper has recently been published, concerning the optimal
choice of the SPAN parameter for local polynomial
estimation [14].

In addition to the transforms and the usual parameters
employed to assess the goodness of fit and prediction,
ACE provides a measure of the significance of the variables
from the variance of the transforms. For ACE to be effective 

Figure 1

ACE smoothing. 

in this respect, the following two conditions must be
fulfilled: 
– the number of objects used in the calibration must be

much greater than that of independent variables; 
– the independent variables must be as little correlated as

possible.

2 DESCRIPTION AND PRELIMINARY EXPLORATION 
OF THE DATA MATRIX

Data were obtained from exhaust released through a chimney
at the oil refinery of Asfaltos Españoles SA in Tarragona
(Spain). The chimney releases smoke from a thermal oil
furnace and three steam boilers (the regular cogeneration
boiler and two reserve ones). However, based on the amount
of data available, only the usual working conditions were
considered, namely: a B-106 thermal oil furnace (of 5 MW
thermal power) and the D-401 cogeneration boiler (of
11.5 MW thermal power). Both engines use the same fuel;
however, owing to the lower yield of the B-106 furnace, and
based on the Bacharach opacity of the chimney smoke, an
additive can be added to the fuel burnt in the furnace to
improve its performance.

Table 1 shows the 25 variables considered, which include
properties of the fuel, adjustable operational parameters and
exhaust composition. An overall 961 observations made from
mid-1995 to late 1996 in the two cases considered (viz.
furnace + boiler, with and without additive in the fuel oil
burnt by the furnace), and 259 observations for the other
situations—not considered in the study owing to the scarcity
of data for each—were studied.
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TABLE 1

Variables with available values in the facility studied

Fuel oil properties

Density at 15ºC Sulphur (w%)

Carbon Conradson residue (wt%) Asphaltenes content (wt%)

Viscosity at 50ºC (cSt) Viscosity at 82.2ºC (cSt)

Nickel (ppm) Vanadium (ppm)

Flash point Oil viscosity at burner (cSt)

Operational parameters

Fuel oil temperature (°C)

Addition of a combustion improver at furnace B-106 fuel oil (yes/no)

Steam production in boiler D-401 (Tm/h)

Furnace B-106

Number of burners (max 3)

Burner fuel oil pressure (kg/cm2)

Draft at outlet in radiation section (mm w.c.)

Flue gases composition

Stack

Bacharach opacity

Gases: O2 (vol%), SO2 (mg/Nm3), CO (ppm), NO (ppm)

Temperature (ºC)

Furnace and boiler

Gases: O2 (vol%), CO (ppm), NO (ppm)

cSt: centistockes
mm w.c: water column millimeters

Processing this information posed a series of problems
including:
– the large number of data to be handled in order to derive

the significant information (i.e. to detect which variables
influenced opacity and in what way); 

– the two operating situations that can lead to a differential
behaviour;

– determining the Bacharach opacity, which is a visual,
scarcely sensitive measure (0.5 unit) that varies over a

narrow range (90% of data are typically within the range
from 3 to 5 units).

3 RESULTS AND DISCUSSION

Parameter values were expressed in units of different
magnitudes, so they were previously autoscaled [15]. This
preliminary treatment ensured that the information con-
sidered would be the relative variation in the parameter
values, whatever the magnitude of the units used to express
them.

3.1 PCA of the Fuel-Related Parameters

A preliminary analysis revealed a high collinearity among
the parameters defining the properties of the fuel (Table 2),
which precluded assessing their significance as any re-
gression model thus established would have been spurious.
This affected not only correlated parameters but also all
derived from them or involved in constructing the model, and
led to false conclusions. For this reason, correlation among
the variables used must be reduced in order to ensure
obtainment of a robust model. No significant correlations
were detected among the other variables.

Collinearity in the parameters was suppressed by using
Principal Component Analysis (PCA) [16, 17] as imple-
mented in the software Unscrambler 6.1 for Windows 95,
from CAMO ASA (Trondheim, Norway). Autoscaled values
for the following parameters were used: density at 15°C
(g/cm3), sulphur (wt%), viscosity at 50 and 82.2°C (cSt),
Conradson coke (wt%), flash point (W/M), asphaltenes
(wt%), nickel (ppm) and vanadium (ppm). The values
recorded for all these variables over the studied period
amounted to 10 980 data (1220 observations × 9 fuel-related
parameters). The number of principal components (PCs)
needed to describe the original data matrix from the variance
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TABLE 2

Coefficients of correlation between the fuel-related parameters obtained by using the whole observation set
(coefficients above 75% are boldfaced)

1 2 3 4 5 6 7 8 9

1 Density at 15ºC 1 –0.41 0.88 0.88 0.85 0.86 –0.61 0.80 0.75
2 Sulphur – 1 –0.69 –0.70 –0.70 –0.71 0.54 –0.52 –0.33

3 Conradson coke – – 1 1.00 0.93 0.95 –0.81 0.89 0.78
4 Asphaltenes – – – 1 0.93 0.95 –0.80 0.90 0.78
5 Visc. 50°C – – – – 1 0.98 –0.64 0.81 0.66

6 Visc. 82.2ºC – – – – – 1 –0.66 0.83 0.68

7 Flash point – – – – – – 1 –0.79 –0.73

8 Nickel – – – – – – – 1 0.96
9 Vanadium – – – – – – – – 1
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accounted for by each was determined (Table 3). The first
four PCs were found to account for 96.63% of the variance
(i.e. to describe virtually the same amount of information as
the nine original variables, in terms of new, uncorrelated
variables). However, the first two components by themselves
accounted for 86.7% of the initial variance (77.7% with the
first and 9% with the second). For this reason, only the PCA
results provided by these two components were considered to
interpret PCA graphics.

TABLE 3

Variance accounted for and cumulative variance as a function
of the number of PCs for the fuel-related parameters

PC Explained variance Cumulative variance

1 77.71 77.71

2 9.03 86.74

3 6.49 93.23

4 3.40 96.63

5 1.53 98.16

3.1.1 Loadings

After the dimension of the data matrix was decided (number
of PCs), the relationship between the calculated abstract
parameters and the original variables was established from
loadings graphs for the first two PCs—in subsequent
calculations, however, the third and fourth PCs were also
used for this purpose. The significance of a given parameter
to each PC was dictated by its distance to the coordinate
origin of the loadings graph. Figure 2 shows the loadings of

the fuel-related variables for the first and second PCs. As can
be seen, the first PC divides the variables in two groups:
sulphur and vanadium contents in one hand, and the other
seven variables in the other. Viscosities at 50º and 82.2ºC are
highly correlated, as they appear almost with the same
coordinates; this also happens for Conradson coke and
asphaltenes contents. The second PC was dictated mainly by
the sulphur and vanadium contents, as they present the
highest score values for this PC.

3.1.2 Scores

Figure 3 shows the scores for the set of observations in the
space bounded by the first two PCs. This graph reveals the
presence of three distinct types of fuel over the studied period
based on the coke + asphaltene content and flash point (i.e.
the parameters essentially defining the first PC).

The scores for the first four PCs calculated by PCA were
used instead of the nine initial fuel-related parameters in
order to construct various statistical models.

3.1.3 Linear Models

Initial univariate regressions exposed no significant relation-
ship between the different parameters and opacity, so various
multiple linear regression methods, including regression of
the whole parameter set, forward regression, backward
regression and stepwise regression, were tested but, again, no
satisfactory model could be obtained in this way.

In a subsequent step, the parameters were transformed in
order to fit the behaviour of opacity to exponential, reciprocal
and second-order models; however, the correlation level thus
achieved never exceeded 20% in calibration.
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Loadings of the fuel-related parameters for the first and
second PCs. (1) Density at 15°C. (2) Sulphur. (3) Conradson
coke. (4) Asphaltenes. (5) Viscosity at 50°C. (6) Viscosity at
82.2°C. (7) Flash point. (8) Nickel. (9) Vanadium.

Figure 3

Scores for the entire set of observations in the space bounded
by the first and second PCs. The three types of fuel are
framed.
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3.2 Application of ACE

Because no satisfactory model could be established with the
above-described means, the model to relate opacity and the
independent variables must be complex and non-linear. We
chose ACE methodology to construct it. We examined two
different operating conditions, namely: 
– with the D-401 boiler on and the B-106 furnace using

additive-containing fuel; 
– the same configuration but with fuel containing no

additive in the furnace.
Only under these conditions was the number of obser-

vations available large enough for effective application of
ACE with a view to constructing robust models.

The ACE module, with autofitting of the SPAN value,
implemented in the chemometric software package PARVUS
1.2 [18], was applied in order to model the behaviour of
Bacharach opacity. Because ACE uses no implicit functions,
but pairs of (xij, yi) points, it yields a graphical relationship
between the independent variables and Bacharach opacity;
also, it gives the percentage of fit for the calibration (viz. the
calibration variance accounted for) and estimates the
predictive power of the model (viz. the cross-validation
variance accounted for) [19] by establishing 16 validation
subsets. The cross-validation process involves splitting the
data set into a series of subsets which are used to construct
regression models from every subset, except one that is
employed to predict the opacity and compare it with
measured values. This process is performed with all the
subsets established. In this way, an estimate of the predictive
capacity of the model is obtained.

The parameters used to construct the model are shown in
Table 4. The data matrices consisted of 416 observations and
13 variables (5408 data) for the model including the fuel
additive, and of 358 observations and 13 variables (4654
data) in the absence of additive. The fuel-related parameters
used in both cases were the scores for the first four PCs
instead of the original fuel variables.

TABLE 4

Independant variables used to construct the ACE model

Stack temperature (ºC) O2 in B-106 (vol%)

SO2 in stack (mg/Nm3) score 1 fuel oil

Oil viscosity at burner (cSt) score 2 fuel oil

Steam production by D-401 (Tm/h) score 3 fuel oil

O2 in D-401 (vol%) score 4 fuel oil

Number of burners at B-106

Burner fuel pressure in B-106 (kg/cm2)

Draft at outlet in radiation section in B-106

(mm w.c.)

By way of an example, Table 5 shows the ACE results for
the first combination (with additive); as can be seen, the more

influential parameters (i.e. those spanning the widest ranges),
in order of decreasing influence, were as follows: stack
temperature, oil viscosity at burner, SO2 in stack, score 1 for
the fuel, O2 in D-401 and steam production in D-401. By
contrast, in the absence of additive in the fuel, the most
influential parameters, in decreasing sequence, were as
follows: SO2 in stack, O2 in D-401, O2 in B-106, score 1 for
the fuel and oil viscosity at burner (Table 6).

TABLE 5

ACE results obtained with additive-containing fuel

(the most significant variables are boldfaced)

Explained variance

Calibration 70.79%
Validation (16 groups) 50.63%

Importance of transformates

Variable Range Variance

Stack temperature 2.5512 0.4297
SO2 in stack 1.5108 0.1445
Oil viscosity at burner 1.6228 0.1407
Steam production by D-401 1.3249 0.1342
O2 in D-401 1.3666 0.0095
Number of burners in B-106 0.4851 0.0328
Burner fuel pressure B-106 0.8241 0.0269
Draft at outlet in radiation section in B-106 0.4997 0.0067
O2 in B-106 0.6323 0.0206
Score 1 fuel oil 1.3924 0.1041
Score 2 fuel oil 0.7331 0.0210
Score 3 fuel oil 0.6390 0.0190
Score 4 fuel oil 0.4022 0.0111

TABLE 6

ACE results obtained with fuel containing no additive

(the most significant variables are boldfaced)

Explained variance

Calibration 61.34%
Validation (14 groups) 36.92%

Importance of transformates

Variable Range Variance

Stack temperature 0.6881 0.0133
SO2 in stack 2.9982 0.0717
Oil viscosity at burner 1.2626 0.0778
Steam production by D-401 0.7618 0.0160
O2 in D-401 2.8686 0.1499
Number of burners in B-106 0.4228 0.0039
Burner fuel pressure B-106 0.4962 0.0237
Draft at outlet in radiation section in B-106 0.2754 0.0026
O2 in B-106 1.3209 0.0785
Score 1 fuel oil 1.3097 0.1759
Score 2 fuel oil 0.4830 0.0077
Score 3 fuel oil 0.6808 0.0139
Score 4 fuel oil 0.5442 0.0111
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Figures 4a-4g show the transforms provided by ACE,
which expose the relationships between the different
parameters and Bacharach opacity. An identical scale was
used on the y-axis of all graphs to better expose the influence
of each parameter. As can be seen, the relationships between
the variables studied and Bacharach opacity are rather
complex and different. The optimal transformations pro-
duced by the ACE algorithm are clearly not regular; also, the
behaviour of some variables depends on the presence or
absence of additives in the fuel, so it is not possible to find a
model by least-squares fitting, and only a correlation of the
original variables with the response may be proposed with
the help of ACE transformations.

The sole prominent variables exhibiting the same trend
in both types of situation are the oil viscosity at burner

and Score 1 for the fuel. Other, less significant variables,
exhibiting no clear-cut trend are the stack temperature, the
SO2 content in stack and the oxygen content in smoke from
both burning engines (furnace and boiler).

The oil viscosity at burner is a design parameter of the
burning equipment and varies between recommended upper
and lower limits. The multivariate correlation reveals the
advisability of using a value near the lowest recommended
by the manufacturer.

Bacharach opacity decreases with increase in Score 1 for
the fuel and, as can be seen from the loadings graph (Fig. 2),
a large value of this score is indicative of decreased contents
in Conradson coke and asphaltenes. Figure 5 shows the
variation of the Bacharach opacity in stack as a function of
the combined Conradson coke + asphaltene content in the 
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Figure 4

ACE transforms for the most significant parameters. (a) Stack temperature. (b) Oil viscosity at burner. (c) SO2 content in stack. (d) Score 1
for the fuel. With (o) and without (•) additive in the fuel.
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Relationship between Bacharach opacity and the combined
Conradson coke + asphaltene content on constancy of all
other parameters.

Figure 6

Variation of opacity at the output of B-106 furnace as a
function of the O2 content.
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Figure 4

ACE transforms for the most significant parameters. (e) O2
content in D-401 boiler. (f) Steam production by D-401
boiler. (g) O2 content in B-106 furnace. With (o) and without
(•) additive in the fuel.

fuel as determined in a field test where all other parameters
were kept constant in the situation furnace + boiler with
additive-containing fuel. As can be seen, fuel quality is
highly influential on opacity.

The contradictory trends observed in the variables SO2,
stack temperature and oxygen in the D-401 boiler in the two
situations studied can be ascribed to:
– the fact that the SO2 content in stack varies over different

ranges that hardly overlap in both situations; 
– the scarcity of temperature data—all within a very narrow

range—in one of the situations; 
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– the narrow range of variation of the oxygen content in the
D-401 boiler in both situations. 
Consequently, the influence of these parameters on

Bacharach opacity should be studied in greater depth in the
future.

The actual contribution of the oxygen content in smoke
from the B-106 furnace is illustrated in Figure 6, the y-axis in
which represents the percent opacity, as measured with a
continuous opacimeter, for furnace smoke; the results follow
a trend consistent with that exposed by ACE.

CONCLUSIONS

The use of multivariate analysis techniques has proved a
highly efficient tool with a view to modelling Bacharach
opacity.

PCA efficiently solves the problems derived from cor-
relation among the parameters that define the properties of
the fuel used. The scores are employed as new, uncorrelated
parameters in order to obtain reliable statistical models. In
addition, PCA reveals the presence of three fuel classes
depending on their combined coke and asphaltene contents.

ACE allows one to reliably determine which parameters
influence Bacharach opacity and also, in a qualitative manner,
in what way. The steps taken based on ACE transforms have
proved effective at the petrochemical plant level.

The Bacharach opacity in stack increases with increasing
Conradson coke and asphaltene contents in the fuel burnt by
the different types of engines, and also with the oil viscosity
at burner. The most immediate practical conclusion is that
one should use values near the lower limit of the design
range for the viscosity at burner tip, fix the limit of the
Conradson coke + asphaltene content in the fuel supply and
adjust the O2 content in the B-106 furnace.

Bacharach opacity bears little quantitative relationship to
the mass content of the emission, so applicable legislation
should rather be based on particulate specifications.
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