Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 2, March–April 2017
Numéro d'article 8
Nombre de pages 17
DOI https://doi.org/10.2516/ogst/2017002
Publié en ligne 10 mars 2017
  • Merdrignac I., Roy-Auberger M., Guillaume D., Verstraete J. (2013) Hydroprocessing and hydroconversion of residue fractions, in: Toulhoat H., Raybaud P. (eds), Catalysis by Transition Metal Sulfides, Editions TECHNIP, Paris, France.
  • Iglesia E., Soled S., Baumgartner J., Reyes S. (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis, Journal of Catalysis 153, 1, 108–122. [CrossRef]
  • Derrien M. (1986) Selective hydrogenation applied to the refining of petrochemical raw materials produced by steam cracking, Studies in Surface Science and Catalysis 27, 613–666. [CrossRef]
  • Godinez C., Cabanes A., Villora G. (1995) Experimental study of the front-end selective hydrogenation of steam-cracking C2-C3 mixture, Chemical Engineering and Processing: Process Intensification 34, 5, 459–468. [CrossRef]
  • Wernert V., Bouchet R., Denoyel R. (2010) Influence of molecule size on its transport properties through a porous medium, Analytical Chemistry 82, 7, 2668–2679. [CrossRef] [PubMed]
  • Deen W. (1987) Hindered transport of large molecules in liquid-filled pores, AIChE Journal 33, 9, 1409–1425. [CrossRef]
  • Dechadilok P., Deen W. (2006) Hindrance factors for diffusion and convection in pores, Industrial & Engineering Chemistry Research 45, 21, 6953–6959. [CrossRef]
  • Satterfield C., Colton C., Pitcher W. (1973) Restricted diffusion in liquids within fine pores, AIChE Journal 19, 3, 628–635. [CrossRef]
  • Comiti J., Renaud M. (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles, Chemical Engineering Science 44, 7, 1539–1545. [CrossRef]
  • Weissberg H. (1963) Effective diffusion coefficient in porous media, Journal of Applied Physics 34, 9, 2636–2639. [CrossRef]
  • Barrande M., Bouchet R., Denoyel R. (2007) Tortuosity of porous particles, Analytical Chemistry 79, 23, 9115–9121. [CrossRef] [PubMed]
  • Hollewand M., Gladden L. (1995) Transport heterogeneity in porous pellets – I. PGSE NMR studies, Chemical Engineering Science 50, 2, 309–326. [CrossRef]
  • Prasher B., Ma Y.H. (1977) Liquid diffusion in microporous alumina pellets, AIChE Journal 23, 3, 303–311. [CrossRef]
  • Tayakout M., Ferreira C., Espinat D., Arribas Picon S., Sorbier L., Guillaume D., Guibard I. (2010) Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts, Chemical Engineering Science 65, 5, 1571–1583. [CrossRef]
  • Callaghan P., MacGowan D., Packer K., Zelaya F. (1990) High-resolution q-space imaging in porous structures, Journal of Magnetic Resonance 90, 1, 177–182.
  • Tanner J. (1970) Use of the stimulated echo in NMR diffusion studies, The Journal of Chemical Physics 52, 5, 2523–2526. [CrossRef]
  • Valiullin R., Kärger J. (2011) The impact of mesopores on mass transfer in nanoporous materials: evidence of diffusion measurement by NMR, Chemie Ingenieur Technik 83, 1-2, 166–176. [CrossRef]
  • Wood J., Gladden L. (2003) Effect of coke deposition upon pore structure and self-diffusion in deactivated industrial hydroprocessing catalysts, Applied Catalysis A: General 249, 2, 241–253. [CrossRef]
  • Kortunov P., Vasenkov S., Kärger J., Valiullin R., Gottschalk P., Fé Elía M., Perez M., Stöcker M., Drescher B., McElhiney G., Berger C., Gläser R., Weitkamp J. (2005) The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales, Journal of the American Chemical Society 127, 37, 13055–13059. [CrossRef] [PubMed]
  • Kirchner T., Shakhov A., Zeigermann P., Valiullin R., Kärger J. (2012) Probing mesopore connectivity in hierarchical nanoporous materials, Carbon 50, 13, 4804–4808. [CrossRef]
  • Morris K.F., Johnson C.S.Jr (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy, Journal of the American Chemical Society 114, 8, 3139–3141. [CrossRef]
  • Johnson C.S. (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications, Progress in Nuclear Magnetic Resonance Spectroscopy 34, 3, 203–256. [CrossRef]
  • Morris G.A. (2002) Diffusion-Ordered Spectroscopy (DOSY), pp. 35–44.
  • Ernst R.R. (1992) Nuclear magnetic resonance Fourier transform spectroscopy (Nobel lecture), Angewandte Chemie International Edition in English 31, 7, 805–823. [CrossRef]
  • Durand E., Clemancey M., Quoineaud A.-A., Verstraete J., Espinat D., Lancelin J.-M. (2008) 1H diffusion-ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) as a powerful tool for the analysis of hydrocarbon mixtures and asphaltenes, Energy & Fuels 22, 4, 2604–2610. [CrossRef]
  • Krüger G., Weiss R. (1970) Diffusionskonstanten einiger organischer Flüssigkeiten, Zeitschrift für Naturforschung A 25, 5, 777–780.
  • Harris K., Alexander J., Goscinska T., Malhotra R., Woolf L., Dymond J. (1993) Temperature and density dependence of the selfdiffusion coefficients of liquid n-octane and toluene, Molecular Physics 78, 1, 235–248. [CrossRef]
  • Pickup S., Blum F. (1989) Self-diffusion of toluene in polystyrene solutions, Macromolecules 22, 10, 3961–3968. [CrossRef]
  • Santos F., Nieto de Castro C., Dymond J., Dalaouti N., Assael M., Nagashima A. (2006) Standard reference data for the viscosity of toluene, Journal of Physical and Chemical Reference Data 35, 1, 1–8. [CrossRef]
  • Sahimi M. (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Reviews of Modern Physics 65, 4, 1393–1534. [CrossRef]
  • Kosek J., Stepanek F., Marek M. (2005) Modeling of transport and transformation processes in porous and multiphase bodies, in Multiscale Analysis in Advances in Chemical Engineering, G. Marin (ed.), Elsevier, pp. 137–203. [CrossRef]
  • Reyes S., Iglesia E. (1991) Effective diffusivities in catalyst pellets: new model porous structures and transport simulation techniques, Journal of Catalysis 129, 2, 457–472. [CrossRef]
  • Štěpánek F., Ansari M.A. (2005) Computer simulation of granule microstructure formation, Chemical Engineering Science 60, 14, 4019–4029. [CrossRef]
  • Koci P., Novak V., Stepanek F., Marek M., Kubicek M. (2010) Multi-scale modelling of reaction and transport in porous catalysts, Chemical Engineering Science 65, 1, 412–419. 20th International Symposium on Chemical Reaction Engineering – Green Chemical Reaction Engineering for a Sustainable Future, 7-10 September, Kyoto, Japan. [CrossRef]
  • Yeong C., Torquato S. (1998) Reconstructing random media, Physical Review E 57, 1, 495–506. [CrossRef] [MathSciNet]
  • Rozman M., Utz M. (2001) Efficient reconstruction of multiphase morphologies from correlation functions, Physical Review E 63, 6, 066701. [CrossRef]
  • Jeulin D. (2012) Morphology and effective properties of multi-scale random sets: a review, Comptes Rendus Mécanique 340, 4-5, 219–229. [CrossRef]
  • Adler P., Jacquin C., Quiblier J. (1990) Flow in simulated porous-media, International Journal of Multiphase Flow 16, 4, 691–712. [CrossRef]
  • Diaz I., Gonzalez-Pena V., Marquez-Alvarez C., Kikkinides E. (2004) Transmission electron microscopy combined with stochastic reconstruction methods for structural characterization of porous alumina synthesized via non-ionic surfactant-templating route, Microporous and Mesoporous Materials 68, 1-3, 11–19. [CrossRef]
  • Koci P., Stepanek F., Kubicek M., Marek M. (2006) Meso-scale modelling of CO oxidation in digitally reconstructed porous Pt/gamma-Al2O3 catalyst, Chemical Engineering Science 61, 10, 3240–3249. [CrossRef]
  • Youssef S., Rosenberg E., Gland N., Kenter J., Skalinski M., Vizika O. (2007) High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates, in SPE/EAGE Reservoir Characterization and Simulation Conference.
  • Rigby S., Gladden L. (1999) The prediction of transport properties of porous media using fractal models and NMR experimental techniques, Chemical Engineering Science 54, 15-16, 3503–3512, 15th International Symposium on Chemical Reaction Engineering (ISCRE 15), 13-16 September, 1998, Newport Beach, CA. [CrossRef]
  • Euzen P., Raybaud P., Krokidis X., Toulhoat H., Le Loarer J.-L., Jolivet J.-P., Froidefond C. (2002) Alumina, in Handbook of porous solids, F. Schüth, K. Sing, J. Weitkamp (eds), Wiley-VCH, Weinheim, pp. 1591–1677. [CrossRef]
  • Digne M., Sautet P., Raybaud P., Euzen P., Toulhoat H. (2004) Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces, Journal of Catalysis 226, 1, 54–68. [CrossRef]
  • Chiche D., Digne M., Revel R., Chanéac C., Jolivet J.-P. (2008) Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH, The Journal of Physical Chemistry C 112, 23, 8524–8533. [CrossRef]
  • Rozita Y., Brydson R., Comyn T., Scott A., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N., Kirkland A., Sawada H., Smith R. (2013) A Study of Commercial Nanoparticulate γ-Al2O3 Catalyst Supports, ChemCatChem 5, 9, 2695–2706. [CrossRef]
  • Klimov O., Leonova K., Koryakina G., Gerasimov E., Prosvirin I., Cherepanova S., Budukva S., Pereyma V., Dik P., Parakhin O., Noskov A. (2014) Supported on alumina Co-Mo hydrotreating catalysts: Dependence of catalytic and strength characteristics on the initial AlOOH particle morphology, Catalysis Today 220, 66–77. [CrossRef]
  • Pardo P., Montoya N., Alarcón J. (2015) Tuning the size and shape of nano-boehmites by a free-additive hydrothermal method, CrystEngComm 17, 10, 2091–2100. [CrossRef]
  • Lee J., Jeon H., Oh D., Szanyi J., Kwak J. (2015) Morphology-dependent phase transformation of γ-Al2O3, Applied Catalysis A: General 500, 58–68. [CrossRef]
  • Moreaud M., Jeulin D., Morard V., Revel R. (2012) TEM image analysis and modelling: application to boehmite nanoparticles, Journal of Microscopy 245, 2, 186–199. [CrossRef] [PubMed]
  • Wang H., Pietrasanta A., Jeulin D., Willot F., Faessel M., Sorbier L., Moreaud M. (2015) Modelling mesoporous alumina microstructure with 3D random models of platelets, Journal of Microscopy 260, 3, 287–301. [CrossRef] [PubMed]
  • Mu D., Liu Z.-S., Huang C., Djilali N. (2007) Prediction of the effective diffusion coefficient in random porous media using the finite element method, Journal of Porous Materials 14, 1, 49–54. [CrossRef]
  • Moulinec H., Suquet P. (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318, 11, 1417–1423.
  • Willot F., Abdallah B., Pellegrini Y.-P. (2014) Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, International Journal for Numerical Methods in Engineering 98, 7, 518–533. [CrossRef]
  • Hashin Z., Shtrikman S. (1963) A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids 11, 2, 127–140. [CrossRef] [MathSciNet]
  • Brunauer S., Emmett P., Teller E. (1938) Adsorption of gases in multimolecular layers, Journal of the American Chemical Society 60, 2, 309–319. [CrossRef]
  • Wu D.H., Chen A.D., Johnson C.S. (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses, Journal of Magnetic Resonance, Series A 115, 2, 260–264. [CrossRef]
  • Archie G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME 146, 01, 54–62. [CrossRef]
  • Titze T., Lauerer A., Heinke L., Chmelik C., Zimmermann N.E., Keil F.J., Ruthven D.M., Kärger J. (2015) Transport in nanoporous materials including MOFs: The applicability of Fick’s laws, Angewandte Chemie International Edition 54, 48, 14580–14583. [CrossRef]
  • Bruggeman D.A.G. (1935) Calculation of various physics constants in heterogenous substances I dielectricity constants and conductivity of mixed bodies from isotropic substances, Annals of Physics 24, 7, 636–664. [NASA ADS] [CrossRef]
  • Kanaun S.K., Levin V. (2003) Self-Consistent Methods for Composites: Vol. 1 – Static Problems, Springer, Dordrecht.
  • D’Agostino C., Chansai S., Bush I., Gao C., Mantle M.D., Hardacre C., James S.L., Gladden L.F. (2016) Assessing the effect of reducing agents on the selective catalytic reduction of NOx over Ag/Al2O3 catalysts, Catalysis Science & Technology 6, 6, 1661–1666. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.