Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 6, November–December 2016
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Article Number 64
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2016019
Published online 07 November 2016
  • Hirt C.W., Amsden A.A., Cook J.L. (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 14, 227–253.
  • Benson D. (1992) Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng. 99, 235–394.
  • Youngs D. (2007) The Lagrange-remap method, in F.F. Grinstein, L.G. Margolin, W.J. Rider (eds), Implicit large Eddy simulation: Computing turbulent flow dynamics, Cambridge University Press.
  • Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance modeling of a compressible hydrodynamics solver on multicore CPUs, in IOS Ebook: Parallel Computing: on the road to Exascale, Series “Advances in parallel computing”, Joubert G.R. et al. (ed.), pp. 449–458, DOI: 10.3233/978-1-61499-621-7-449.
  • Williams S., Waterman A., Patterson Roofline D. (2009) An insightful visual performance model for multicore architectures, Commun. ACM 52, 65–76.
  • Treibig J., Hager G. (2010) Introducing a performance model for bandwidth-limited loop kernels, Proceedings of the Workshop “Memory issues on Multi- and Manycore Platform” at PPAM 2009, Lecture Notes in Computer Science 6067, 615–624.
  • Stengel H., Treibig J., Hager G., Wellein G. (2015) Quantifying performance bottlenecks of stencil computations using the Execution-Cache-Memory model, Proc. ICS’15, Proc. of the 29th ACM on Int. Conf. on Supercomputing, pp. 207-2016, ACM, New York, ISBN: 978-1-4503-3559-1, DOI: 10.1145/2751205.2751240.
  • Colella P., Woodward P.R. (1984) The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54, 115–173.
  • Després B., Mazeran C. (2005) Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178, 327–372. [MathSciNet]
  • Maire P.-H., Abgrall R., Breil J., Ovadia J. (2007) A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. Sci. Comput. 29, 1781–1824.
  • Maire P.-H. (2009) A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228, 2391–2425. [CrossRef]
  • Dukowicz J.K., Baumgardner J.R. (2000) Incremental remapping as a transport/advection algorithm, J. Comput. Phys. 160, 318–335. [CrossRef]
  • Schiesser W.E. (1991) The Numerical Method of Lines, Academic Press, ISBN 0-12-624130-9.
  • Toro E.F. (2009) Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 3rd edn., Springer, ISBN 978-3-540-25202-3, DOI: 10.1007/b79761. [CrossRef]
  • Liou M.S. (1996) A sequel to AUSM: AUSM+, J. Comput. Phys. 129, 2, 364–382. [NASA ADS] [CrossRef] [MathSciNet]
  • Sweby P.K. (1984) High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 995–1011. [NASA ADS] [CrossRef] [MathSciNet]
  • Sod G.A. (1971) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27, 1–31. [NASA ADS] [CrossRef] [MathSciNet]
  • Després B., Lagoutière F. (2001) Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput. 16, 479–524. [CrossRef]
  • Després B., Lagoutière F., Labourasse E., Marmajou I. (2010) An antidissipative transport scheme on unstructured meshes for multicomponent flows, IJFV 7, 30–65.
  • De Vuyst F., Béchereau M., Gasc T., Motte R., Peybernes M., Poncet R. (2016) Stable and accurate low-diffusive interface capturing advection schemes, Proc. of the MULTIMAT 2015 Conference Würsburg, arXiv:1605.07091 (preprint).
  • Park J.S., Kim C. (2011) Multi-dimensional limiting process for discontinuous Galerkin methods on unstructured grids, in Computational Fluid Dynamics 2010, Kuzmin A. (ed.), Springer, pp. 179–184, ISBN 978-3-642-17883-2. [CrossRef]
  • Rider A.J., Kothe D.B. (1998) Reconstructing volume tracking, J. Comput. Phys. 141, 112–152. [CrossRef]
  • Bernard-Champmartin A., De Vuyst F. (2014) A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows, J. Comput. Phys. 274, 19–49. [CrossRef]
  • Abgrall R. (1996) How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys. 125, 150–160. [CrossRef] [MathSciNet]
  • Saurel R., Abgrall R. (1999) A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21, 1115–1145. [CrossRef] [MathSciNet]
  • Farhat C., Rallu A., Shankaran S. (2008) A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J. Comput. Phys. 227, 7640–7700. [CrossRef]
  • Bachmann M., Helluy P., Jung J., Mathis H., Müller S. (2013) Random sampling remap for compressible two-phase flows, Comput. Fluids 86, 275–283. [CrossRef]
  • Loubère R., Maire P.-H., Shashkov M., Breil J., Galera S. (2010) ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys. 229, 4724–4761. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.