IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 445 - 456
DOI https://doi.org/10.2516/ogst/2013138
Published online 17 December 2013
  • De Micco V., Buonomo R., Paradiso R., De Pascale S., Aronne G. (2012) Soybean cultivar selection for Bioregenerative Life Support Systems (BLSS) – Theoretical selection, Adv. Space Res. 49, 10, 1415–1421, DOI:10.1016/j.asr.2012.02.022. [CrossRef]
  • Zimmerman R. (2003) Growing pains, Air Space Magazine, Sept., pp. 31–35.
  • Perchonok M., Bourland C. (2002) NASA food systems: past, present, and future, Nutrition 18, 913–920. [CrossRef] [PubMed]
  • Salisbury F.B., Gitelson J.I., Lisovsky G.M. (1997) Bios-3: Siberian experiments in bioregenerative life support, Bioscience 47, 575–585. [CrossRef] [PubMed]
  • Wolverton B.C. (1980) Higher Plants for Recycling Human Waste into Food, Potable Water and Revitalized Air in a Closed Life Support System, Earth Resources Laboratory, National Aeronautics and Space Administration, NASA-TM-87550.
  • Wignarajah K., Pisharody S., Fisher J.W. (2000) Can incineration technology convert CELSS wastes to resources for crop production? A working hypothesis and some preliminary findings, Adv. Space Res. 26, 327–333. [CrossRef] [PubMed]
  • Zolotukhin I.G., Tikhomirov A.A., Kudenko Y.A., Gribovskaya I.V. (2005) Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems, Adv. Space Res. 35, 1559–1562. [CrossRef] [PubMed]
  • Gros J.B., Poughon L., Lasseur C., Tikhomirov A.A. (2003) Recycling efficiencies of C,H,O,N,S, and P elements in a biological life support system based on micro-organisms and higher plants, Adv. Space Res. 31, 195–199. [CrossRef] [PubMed]
  • Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R. (1988) MELISSA – a microorganisms based model for CELSS development, 3rd symposium on space thermal control & life support system, Noordwijk, The Netherlands, 3-6 Oct.
  • Yabuki K., Miyagawa H. (1970) Studies on the effect of wind speed on photosynthesis, Jpn. J. Agric. Meteorol. 26, 137–142. (in Japanese with English summary). [CrossRef]
  • Monteith J.L., Unsworth M.H. (1990) Principles of Environmental Physics, Edward and Arnold Publishing Co, London, p. 291.
  • Kitaya Y., Shibuya T., Yoshida, Kiyota M. (2004) Effects of air velocity on photosynthesis of plant canopies under elevated CO2 levels in a plant culture system, Adv. Space Res. 34, 7, 1466–1469. [CrossRef] [PubMed]
  • Tiwari A., Fontaine J.P. (2009) Towards the prediction of heat & mass transfer in an air-conditioned environment for a life support system in space, Water Air Soil Poll. Focus 9, 5-6, 539–547. [CrossRef]
  • Tiwari A., Lafon P., Kondjoyan A., Fontaine J.P. (2010) Experimental modelling for the prediction of heat and mass transfer in an air-conditioned space environment for life support systems, 40th ICES-2010, Barcelona, Spain, AIAA2010-6171
  • Tiwari A., Lafon A., Kondjoyan A., Fontaine J.P. (2011) An air-conditioned wind tunnel environment for the study of mass and heat flux due to condensation of humid air, Chapter 4, Wind Tunnels: Aerodynamics, Models and Experiments, Pereira J.D. (ed.), Nova Science Publishers, Inc., New York, USA, ISBN: 978-1-61209-1.
  • Tiwari A. (2011) Characterisation of mass transfer by condensation of humid air on a horizontal plate, PhD Thesis, Blaise Pascal University, Clermont-Ferrand, France.
  • Beysens D. (2006) Dew nucleation and growth, C. R. Physique 7, 1082–1100. [CrossRef]
  • Incropera F.P., DeWitt D.P. (1990) Fundamentals of Heat and Mass Transfer, 3rd edn., John Wiley & Sons, Inc., New York.
  • Minkowycz W.J., Sparrow E.M. (1996) Condensation heat transfer in the presence of noncondensables, interfacial resistance, variable properties and diffusion, Int. J Heat Mass Trans. 9, 1125–1144. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.