Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 6, November-December 2011
Page(s) 1035 - 1051
DOI https://doi.org/10.2516/ogst/2011121
Published online 15 September 2011
  • Schechter M. (1999) New cycles for automobile engines (1999) SAE Technical Paper 1999-01-0623.
  • Higelin P., Charlet A., Chamaillard Y. (2002) Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept, J. Appl. Thermodynamics 5, 1, 1-11.
  • Donitz C., Vasile I., Onder C., Guzzella L. (2009) Realizing a concept for high efficiency and excellent driveability: The downsized and supercharged hybrid pneumatic engine, SAE paper 2009-01-1326.
  • Andersson M., Johansson B., Hultqvist A. (2005) An Air Hybrid for High Power Absorption and Discharge, SAE paper 2005-01-2137.
  • Tai C., Tsao T., Levin M.B., Schechter M.M. (2003) Using Camless Valvetrain for Air Hybrid Optimization, SAE paper 2003-01-0038.
  • Trajkovic S., Tunestal P., Johanssonn B. (2008) Investigation of Different Valve Geometries and Valve Timing Strategies and their Effect on Regenerative Efficiency for a Pneumatic Hybrid with Variable Valve Actuation, SAE paper 2008-01-1715.
  • Donitz C., Vasile I., Onder C., Guzzella L. (2009) Modelling and optimizing two- and four-stroke hybrid pneumatic engines Proc. IMechE Part D: J. Automobile Engineering 223, 2, 255-280. [CrossRef]
  • Ivanco A., Colin G., Chamaillard Y., Charlet A., Higelin P. (2009) Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition, Oil Gas Sci. Technol. - Rev. IFP 65, 1, 179–190. [CrossRef]
  • Trajkovic S., Per T., Bengt J. (2010) Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements, SAE paper 2010-01-0825.
  • Elgowainy A., Burnham A., Wang M., Molburg J., Rousseau A. (2009) Well-To-Wheels Use and Greenhouse Gas Emissions of Plug-in-Hybrid Electric Vehicles, SAE paper 2009-01-1309.
  • Brejaud P., Charlet A., Chamaillard Y., Ivanco A., Higelin P. (2009) Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes, Oil Gas Sci. Technol. - Rev. IFP 65, 1, 27–37. [CrossRef]
  • Wu Y.Y., Chen B.C., Hsieh F.C., Ke C.T. (2009) Heat transfer model for small-scale spark-ignition engines, Int. J. Heat Mass Trans. 52, 7-8, 1875-1886.
  • Thombare D.G., Verma S.K. (2008) Technological development in the Stirling cycle engines, Renew. Sust. Energ. Rev. 12, 1, 1-38. [CrossRef]
  • Woshni G.A. (1967) Universally application equation for instantaneous heat transfer coefficient in internal combustion engine, SAE 76, 670931, 3065-3083.
  • Annand W.J.D. (1963) Heat transfer in the cylinders of reciprocating internal combustion engines, Proc. IMechE Part E: J. Process Mechanical Engineering 177, 973-990. [CrossRef]
  • Eichelberg G. (1939) Some new investigations on old combustion engine problems, Engineering 148, 446-463;
  • Engineering 148, 547-560.
  • Hohenberg G.F. (1979) Advanced approaches for heat transfer calculations, Diesel Engine Thermal Loading, SAE Technical paper SAE SP-449.
  • Yang J. (1988) Convective heat transfer predictions and experiments in an IC engine, PhD Thesis, University of Wisconsin-Madison.
  • Ohkubo Y., Ohtsuka M., Kato J., Kozuka K., Sugiyama K. (1984) Velocity measurements by back-scattered LDV, 4th Joint Symposium on Internal Combustion Engines.
  • Arcoumanis C., Cuttera P., Whitelawa D.S. (1998) Heat Transfer Processes in Diesel Engines, Chem. Eng. Res. Des. 76, 2, 124-132. [CrossRef]
  • Sanli A., Ozsezen A.N., Kilicaslan I., Canakci M. (2007) The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine, Appl. Therm. Eng. 28, 11-12, 1395-1404.
  • Li Y., Zhao H., Peng Z., Ladommatos N. (2001) Analysis of tumble and swirl motions in a Four-Valve SI Engine (2001), SAE Technical paper 2001-01-3555.
  • Arcoumanis C., Bae C.S., Hu Z. (1994) Flow and combustion in a Four-Valve Spark Ignitin Optical Engine, SAE Technical paper 940475.
  • Kang K.Y., Baek J.H. (1995) LDV measurement and analysis of tumble formation and decay in a four-valve engine, Exper. Therm. Fluid Sci. 11, 2, 181-189. [CrossRef]
  • Huang R.F., Yang H.S., Yeh C.-N. (2008) In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons, Exper. Therm. Fluid Sci. 32, 5, 1156-1167. [CrossRef]
  • Huang R.F., Huang C.W., Chang S.B., Yang H.S., Lin T.W., Hsu W.Y. (2005) Topological flow evolutions in cylinder of a motored engine during intake and compression strokes, J. Fluids Struct. 20, 1, 105-127. [CrossRef]
  • Lin L., Shulin D., Jin X., Jinxiang W., Xiaohong G. (2000) Effetcs of combustion chamber geometry on in-cylinder air motion and performance in DI Diesel Engine, SAE Technical paper 2000-01-0510.
  • Kawashima J.I., Ogawa H., Tsuru Y. (1998) Research on a variable swirl Intake port for 4-valve Hi-speed DI Diesel Engines, SAE Technical paper 982680.
  • Wu H.W., Perng S.W. (2002) LES analysis of turbulent flow and heat transfer in motored engines with various SGS models, Int. J. Heat Mass Trans. 45, 11, 2315-2328. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.