Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Number 2, March-April 2010
Page(s) 331 - 343
DOI https://doi.org/10.2516/ogst/2009062
Published online 21 April 2010
  • Rein M. (2002) Interactions between drops and hot surfaces, in Drop-Surface Interactions, Springer-Verlag, pp. 185-217.
  • Chaves H., Kubitzek A.M., Obermeier F. (1999) Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls, Int. J. Heat Fluid Fl. 20, 5, 470-476. [CrossRef]
  • Bernardin J.D., Stebbins C.J., Mudawar I. (1996) Effects of surface roughness on water droplet impact history and heat transfer regimes, Int. J. Heat Mass Tran. 40, 1, 73-88. [CrossRef]
  • Bernardin J.D., Stebbins C.J., Mudawar I. (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Int. J. Heat Mass Tran. 40, 247-267. [CrossRef]
  • Bernardin J.D., Mudawar I. (1999) The Leidenfrost Point: Experimental Study and Assessment of Existing Models, J. Heat Trans-T. ASME 121, 894-903. [CrossRef]
  • Bernardin J.D., Mudawar I. (2004) A Leidenfrost point model for impinging droplets and sprays, J. Heat Trans.-T. ASME 126, 2, 272-278. [CrossRef]
  • Moita A.S., Moreira A.L.N. (2007) Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization, Int. J. Heat Fluid Fl. 28, 4, 735-752. [CrossRef]
  • Desoutter G., Cuenot B., Habchi C., Poinsot T. (2005) Interaction of a premixed flame with a liquid fuel film on a wall, Proc. Combust. Inst. 30, 259-266. [CrossRef]
  • Fardad D., Ladommatos N. (1999) Evaporation of hydrocarbon compounds, including gasoline and diesel fuel, on heated metal surfaces, Proc. Inst. Mech. Eng. Part D - J. Automobile Eng. 213, D6, 625-645. [CrossRef]
  • Stanglmaier R.H., Roberts C.E., Moses C.A. (2002) Vaporization of Individual fuel drops on a heated surface: A study of fuel-wall interactions within Direct-injected Gazoline (DIG) Engines, SAE paper 2002-01-0838.
  • Dhir V.K. (1998) Boiling heat transfer, Annu. Rev. Fluid Mech. 30, 365-401. [CrossRef]
  • Dhir V.K. (1991) Nucleate and transition boiling heat transfer under pool and external flow conditions, Int. J. Heat Fluid Fl. 12, 4, 290-314. [CrossRef]
  • Xiong T.Y., Yuen M.C. (1991) Evaporation of a liquid droplet on hot plate, Int. J. Heat Mass Tran. 34, 7, 1881-1894. [CrossRef]
  • Tamura Z., Tanasawa Y. (1959) Evaporation and Combustion of a drop contacting with a hot surface, Symp. Combust. 509-522.
  • Takano T., Fujita T., Kobayasi K. (1995) Vaporization Behavior of a Sigle Droplet Impinging on hot Surface with a Flame-Sprayed Ceramic Coating and a Pressurized Atmosphere, Heat Transfer- Jap. Res. 24, 1, 80-97.
  • O’Rourke P., Amsden A. (2000) A Spray/wall Interaction Submodel for the KIVA-3 Wall Film Model, SAE paper 2000-01-0271.
  • Desoutter G., Habchi C., Cuenot B., Poinsot T. (2006) Single-component Liquid film evaporation model development and validation using Direct Numerical Simulation, ICLASS Kyoto, 2006.
  • Desoutter G., Habchi C., Cuenot B., Poinsot T. (2009) DNS and modeling of the turbulent boundary layer over an evaporating liquid film, Int. J. Heat Mass Tran. doi:10.1016/j.ijheatmasstransfer.2009.06.039.
  • Iida Y., Kobayasi K. (1969) Distribution of void fraction above a horizontal heating surface in pool boiling, Bull. JSME 12, 283-290.
  • Nishio S., Tanaka H. (2002) Simplified Model Predicting Contact-Line-Length Density at Critical Heat Flux Based on Direct Observation of Boiling Structure, JSME Int. J. B-Fluid T. 50, 1, 72-78. [CrossRef]
  • Dhir V.K., Liaw S.P. (1989) Framework for a Unified Model for Nucleate and Transition Pool Boiling, J. Heat Trans.-T. ASME 111, 739-746. [CrossRef]
  • Nigmatulin B.I., Vasiliev N.I., Guguchkin V.V. (1993) Interaction between liquid droplets and heated surface, Warme Stoffubertragung 28, 313-319. [CrossRef]
  • Temple-Pediani R.W. (1969) Fuel drop vaporization under pressure on a hot surface, Proc. Inst. Mech. Eng. 184 Pt. 1, 38, 677-696. [CrossRef]
  • Spiegler P., Hopenfeld J., Silberberg M., Bumpus J., Norman A. (1963) Onset of stable film boiling and the foam limit, Int. J. Heat Mass Tran. 6, 11, 987-989. [CrossRef]
  • Lienhard J.H. (1976) Correlation for the limiting liquid superheat, Chem. Eng. Sci. 31, 9, 847-849. [CrossRef]
  • Emmerson G.S., Snoek C.W. (1978) The effect of pressure on the leidenfrost point of discrete drops of water and freon on a brass surface, Int. J. Heat Mass Tran. 21, 8, 1081-1086. [CrossRef]
  • Breuer A., Klingsporn M., Schneemann G.A., Wruck N., Renz U. (1993) Experimental and Theoritical Investigation of the Phase Transition of Multicomponent Sprays and the Influence of the wall heat flux, Periodic Report, 01.07.1993 to 31.12.1993, Contract JOU2-CT92-0162.
  • Chen R.H., Chiu S.L., Lin T.F. (2207) On the collision behaviors of a diesel drop impinging on a hot surface, Exp. Therm. Fluid Sci. 32, 2, 587-595. [CrossRef]
  • Kandlikar S.G., Steinke M.E. (2001) Contact angles of droplets during spread and recoil after impinging on a heated surface, Chem. Eng. Res. Des. 79, A4, 491-498. [CrossRef]
  • Nagaoka M., Kawazoe H., Nomura N. (1994) Modeling Fuel Spray Impingement on a Hot Wall for Gasoline Engines, SAE paper 940525.
  • Kandlikar S.G., Steinke M.E. (2002) Contact angles and interface behavior during rapid evaporation of liquid on a heated surface, Int. J. Heat Mass Tran. 45, 18, 3771-3780. [CrossRef]
  • Yang G.E., Fan L.-S. (2005) Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime, Phys. Fluids 17, 027104, 1-20.
  • Chandra S., Aziz S.D. (1994) Leidenfrost Evaporation of Liquid Nitrgen Droplets, J. Heat Trans.-T. ASME 116, 999- 1006. [CrossRef]
  • Kistemaker J. (1963) The spheroidal state of waterdrop, Physica 29, 96-104. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.